Skip to main content

Advertisement

Log in

MSBES: an improved bald eagle search algorithm with multi- strategy fusion for engineering design and water management problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Bald Eagle Search algorithm is prone to falling into local optimums and having poor convergence accuracy when solving complex optimization problems. This paper proposes a multi-strategy modified Bald Eagle Search (MSBES) algorithm to solve these problems. Firstly, adaptive control factors are used to replace key control parameters, and the adaptive characteristics are brought into play in the algorithm search process to enrich the search mechanism and effectively balance the ability of algorithm exploitation and exploration. The Cauchy operator and the strategy of fusing Levy flight and adaptive weights are introduced to update the position equation, expand the search range, avoid excessive population assimilation at the end of the iteration, and strengthen the algorithm’s ability of anti-prematurity. Finally, adaptive variance probabilities are employed to strengthen the exploration ability and the ability to escape local extremes and maintain population diversity. The performance of this algorithm was evaluated on 59 test functions from CEC2014 and CEC2017, eight engineering optimization problems, one reservoir flood control optimal scheduling problem, and one Muskingum flood evolution problem. Experimental results show that MSBES has the advantages of strong merit-seeking ability, high convergence accuracy, and fast convergence speed compared to other advanced optimization algorithms. It also has better robustness, which can effectively deal with complex engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Algorithm 2
Fig. 2
Algorithm 3
Algorithm 4
Fig. 3
Algorithm 5
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Jiang J, Zhao Z, Liu Y, Li W, Wang H (2022) DSGWO: an improved grey wolf optimizer with diversity enhanced strategy based on group-stage competition and balance mechanisms. Knowl-Based Syst 250:109100. https://doi.org/10.1016/j.knosys.2022.109100

    Article  Google Scholar 

  2. Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32(16):12363–12379. https://doi.org/10.1007/s00521-020-04832-8

    Article  Google Scholar 

  3. Abualigah L, Elaziz MA, Khasawneh AM, Alshinwan M, Ibrahim RA, Al-qaness MAA, Mirjalili S, Sumari P, Gandomi AH (2022) Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results. Neural Comput Appl 34(6):4081–4110. https://doi.org/10.1007/s00521-021-06747-4

    Article  Google Scholar 

  4. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, 27 Nov–1 Dec 1995, vol 1944 pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  5. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  6. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen HL (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst-Int J Esci 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  7. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  8. Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1):22–34. https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  9. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  Google Scholar 

  10. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MAA, Gandomi AH (2021) Aquila Optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  11. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  12. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  13. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  14. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33(9):1455–1465. https://doi.org/10.1016/S0031-3203(99)00137-5

    Article  Google Scholar 

  15. Ingber L (1993) Simulated annealing: practice versus theory. Math Comput Model 18(11):29–57. https://doi.org/10.1016/0895-7177(93)90204-C

    Article  MathSciNet  Google Scholar 

  16. Tang D (2019) Spherical evolution for solving continuous optimization problems. Appl Soft Comput 81:105499. https://doi.org/10.1016/j.asoc.2019.105499

    Article  Google Scholar 

  17. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18. https://doi.org/10.1162/106365603321828970

    Article  Google Scholar 

  18. Zhong C, Li G, Meng Z (2022) Beluga whale optimization: a novel nature-inspired metaheuristic algorithm. Knowl-Based Syst 251:109215. https://doi.org/10.1016/j.knosys.2022.109215

    Article  Google Scholar 

  19. Wang W-C, Tian W-C, Xu D-M, Zang H-F (2024) Arctic puffin optimization: a bio-inspired metaheuristic algorithm for solving engineering design optimization. Adv Eng Softw 195:103694. https://doi.org/10.1016/j.advengsoft.2024.103694

    Article  Google Scholar 

  20. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):35. https://doi.org/10.1145/2480741.2480752

    Article  Google Scholar 

  21. Morales-Castañeda B, Zaldívar D, Cuevas E, Fausto F, Rodríguez A (2020) A better balance in metaheuristic algorithms: does it exist? Swarm Evol Comput 54:100671. https://doi.org/10.1016/j.swevo.2020.100671

    Article  Google Scholar 

  22. Li J, Gao L, Li X (2024) Multi-operator opposition-based learning with the neighborhood structure for numerical optimization problems and its applications. Swarm Evol Comput 84:101457. https://doi.org/10.1016/j.swevo.2023.101457

    Article  Google Scholar 

  23. Wang Y, Gao S, Zhou M, Yu Y (2021) A multi-layered gravitational search algorithm for function optimization and real-world problems. IEEE/CAA J Automatica Sinica 8:94–109. https://doi.org/10.1109/JAS.2020.1003462

    Article  Google Scholar 

  24. Sun G, Shang Y, Yuan K, Gao H (2022) An improved whale optimization algorithm based on nonlinear parameters and feedback mechanism. Int J Comput Intell Syst 15(1):38. https://doi.org/10.1007/s44196-022-00092-7

    Article  Google Scholar 

  25. Wang Y, Cai Z, Guo L, Li G, Yu Y, Gao S (2024) A spherical evolution algorithm with two-stage search for global optimization and real-world problems. Inf Sci 665:120424. https://doi.org/10.1016/j.ins.2024.120424

    Article  Google Scholar 

  26. Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 166:113917. https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  27. Wang W-c, Tao W-h, Tian W-c, Zang H-f (2024) A multi-strategy slime mould algorithm for solving global optimization and engineering optimization problems. Evol Intel 17(5):3865–3889. https://doi.org/10.1007/s12065-024-00962-3

    Article  Google Scholar 

  28. Zhong R, Zhang C, Yu J (2025) Hierarchical RIME algorithm with multiple search preferences for extreme learning machine training. Alex Eng J 110:77–98. https://doi.org/10.1016/j.aej.2024.09.109

    Article  Google Scholar 

  29. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. Trans Evol Comp 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  30. Alsattar HA, Zaidan AA, Zaidan BB (2020) Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev 53(3):2237–2264. https://doi.org/10.1007/s10462-019-09732-5

    Article  Google Scholar 

  31. Fathy A (2023) Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles. Appl Energy 334:120688. https://doi.org/10.1016/j.apenergy.2023.120688

    Article  Google Scholar 

  32. Yu X, Li J, Kang F (2023) A hybrid model of bald eagle search and relevance vector machine for dam safety monitoring using long-term temperature. Adv Eng Inform 55:101863. https://doi.org/10.1016/j.aei.2022.101863

    Article  Google Scholar 

  33. Yan JX, Li G, Qi GP, Yao XD, Song M (2022) Improved feed forward with bald eagle search for conjunctive water management in deficit region. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.136614

    Article  Google Scholar 

  34. Hamza MA, Mengash HA, Nour MK, Alasmari N, Aziz ASA, Mohammed GP, Zamani AS, Abdelmageed AA (2022) Improved bald eagle search optimization with synergic deep learning-based classification on breast cancer imaging. Cancers. https://doi.org/10.3390/cancers14246159

    Article  Google Scholar 

  35. Alsubai S, Hamdi M, Abdel-Khalek S, Alqahtani A, Binbusayyis A, Mansour RF (2022) Bald eagle search optimization with deep transfer learning enabled age-invariant face recognition model. Image Vis Comput 126:104545. https://doi.org/10.1016/j.imavis.2022.104545

    Article  Google Scholar 

  36. Wang W, Tian W, Chau K, Zang H, Ma M, Feng Z, Xu D (2023) Multi-reservoir flood control operation using improved bald eagle search algorithm with ε constraint method. Water. https://doi.org/10.3390/w15040692

    Article  Google Scholar 

  37. Alsaidan I, Shaheen MAM, Hasanien HM, Alaraj M, Alnafisah AS (2022) A PEMFC model optimization using the enhanced bald eagle algorithm. Ain Shams Eng J 13(6):101749. https://doi.org/10.1016/j.asej.2022.101749

    Article  Google Scholar 

  38. Sharma SR, Kaur M, Singh B (2023) A self-adaptive bald eagle search optimization algorithm with dynamic opposition-based learning for global optimization problems. Expert Syst 40(2):e13170. https://doi.org/10.1111/exsy.13170

    Article  Google Scholar 

  39. Ferahtia S, Rezk H, Djerioui A, Houari A, Motahhir S, Zeghlache S (2023) Modified bald eagle search algorithm for lithium-ion battery model parameters extraction. ISA Trans 134:357–379. https://doi.org/10.1016/j.isatra.2022.08.025

    Article  Google Scholar 

  40. Tuerxun W, Xu C, Guo H, Guo L, Zeng N, Gao Y (2022) A wind power forecasting model using LSTM optimized by the modified bald eagle search algorithm. Energies. https://doi.org/10.3390/en15062031

    Article  Google Scholar 

  41. Chhabra A, Hussien AG, Hashim FA (2023) Improved bald eagle search algorithm for global optimization and feature selection. Alex Eng J 68:141–180. https://doi.org/10.1016/j.aej.2022.12.045

    Article  Google Scholar 

  42. Wang W, Tian W, Chau K-w, Xue Y, Xu L, Zang H (2023) An improved bald eagle search algorithm with cauchy mutation and adaptive weight factor for engineering optimization. CMES-Comput Model Eng Sci. https://doi.org/10.32604/cmes.2023.026231

    Article  Google Scholar 

  43. Liu W, Zhang J, Wei W, Qin T, Fan Y, Long F, Yang J (2022) A hybrid bald eagle search algorithm for time difference of arrival localization. Appl Sci. https://doi.org/10.3390/app12105221

    Article  Google Scholar 

  44. Chen Y, Wu W, Jiang P, Wan C (2023) An improved bald eagle search algorithm for global path planning of unmanned vessel in complicated waterways. J Mar Sci Eng. https://doi.org/10.3390/jmse11010118

    Article  Google Scholar 

  45. Yun-chuan G, Chang-sheng Z, Qing-na D, Yun-he L, Qian C, Bin Q, Rong H (2022) Improved bald eagle search algorithm fused with multiple strategies. Control Decision. https://doi.org/10.13195/j.kzyjc.2022.0211

    Article  Google Scholar 

  46. Miao FH, Yao L, Zhao XJ (2021) Symbiotic organisms search algorithm using random walk and adaptive Cauchy mutation on the feature selection of sleep staging. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.114887

    Article  Google Scholar 

  47. Zhao SW, Wang PJ, Heidari AA, Zhao XH, Ma C, Chen HL (2022) An enhanced Cauchy mutation grasshopper optimization with trigonometric substitution: engineering design and feature selection. Eng Comput 38(Suppl 5):4583–4616. https://doi.org/10.1007/s00366-021-01448-x

    Article  Google Scholar 

  48. Kuyu YC, Vatansever F (2022) Modified forensic-based investigation algorithm for global optimization. Eng Comput 38(4):3197–3218. https://doi.org/10.1007/s00366-021-01322-w

    Article  Google Scholar 

  49. Kuo TMY, Wang KJ (2022) A hybrid k-prototypes clustering approach with improved sine-cosine algorithm for mixed-data classification. Comput Ind Eng. https://doi.org/10.1016/j.cie.2022.108164

    Article  Google Scholar 

  50. Niu YB, Yan XF, Wang YZ, Niu YZ (2022) Dynamic opposite learning enhanced artificial ecosystem optimizer for IIR system identification. J Supercomput 78(11):13040–13085. https://doi.org/10.1007/s11227-022-04367-w

    Article  Google Scholar 

  51. Wang YW, Liu H, Ding GY, Tu LP (2023) Adaptive chimp optimization algorithm with chaotic map for global numerical optimization problems. J Supercomput 79(6):6507–6537. https://doi.org/10.1007/s11227-022-04886-6

    Article  Google Scholar 

  52. Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731. https://doi.org/10.1016/j.engappai.2020.103731

    Article  Google Scholar 

  53. Emary E, Zawbaa HM, Sharawi M (2019) Impact of Lèvy flight on modern meta-heuristic optimizers. Appl Soft Comput 75:775–789. https://doi.org/10.1016/j.asoc.2018.11.033

    Article  Google Scholar 

  54. He QLJ, Xu H (2021) Hybrid Cauchy mutation and uniform distribution of grasshopper optimization algorithm. Control Decision 36(7):1558–1568. https://doi.org/10.13195/j.kzyjc.2019.1609

    Article  Google Scholar 

  55. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  56. Kumar J, Singh AK (2021) Performance evaluation of metaheuristics algorithms for workload prediction in cloud environment. Appl Soft Comput 113:107895. https://doi.org/10.1016/j.asoc.2021.107895

    Article  Google Scholar 

  57. Liang JJ, Qu BY, Suganthan PN (2013) Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014

  58. Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2016) Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-Parameter Optimization. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017

  59. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  60. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. J Eng Ind 98(3):1021–1025. https://doi.org/10.1115/1.3438995

    Article  Google Scholar 

  61. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput 56:100693. https://doi.org/10.1016/j.swevo.2020.100693

    Article  Google Scholar 

  62. Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model 40(5):3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  63. Wang W-c, Tian W-c, Xu D-m, Chau K-w, Ma Q, Liu C-j (2023) Muskingum models’ development and their parameter estimation: a state-of-the-art review. Water Resour Manage 37(8):3129–3150. https://doi.org/10.1007/s11269-023-03493-1

    Article  Google Scholar 

  64. Wang W-c, Tian W-c, Hu X-x, Hong Y-h, Chai F-x, Xu D-m (2024) DTTR: encoding and decoding monthly runoff prediction model based on deep temporal attention convolution and multimodal fusion. J Hydrol 643:131996. https://doi.org/10.1016/j.jhydrol.2024.131996

    Article  Google Scholar 

  65. Hao X, Feng Z, Peng T, Yang S (2024) Meta-learning guided label noise distillation for robust signal modulation classification. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2024.3462544

    Article  Google Scholar 

  66. Zhong R, Peng F, Yu J, Munetomo M (2024) Q-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimization. Alex Eng J 87:148–163. https://doi.org/10.1016/j.aej.2023.12.028

    Article  Google Scholar 

  67. Hao X, Feng Z, Yang S, Wang M, Jiao L (2023) Automatic modulation classification via meta-learning. IEEE Internet Things J 10(14):12276–12292. https://doi.org/10.1109/JIOT.2023.3247162

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the doctoral innovation fund of North China University of Water Resources and Electric Power (No: 202220902), the special project for collaborative innovation of science and technology in 2021 (No: 202121206), and Henan Province university scientific and technological innovation team (No: 18IRTSTHN009).

Author information

Authors and Affiliations

Authors

Contributions

Wen-chuan Wang: Conceptualization, Methodology, Writing—original draft, Formal analysis. Wei-can Tian:Investigation, Writing—original draft, Methodology, Data curation. Kwok-wing Chau: Writing—original draft, Formal analysis. Hong-fei Zang: Formal analysis, Investigation, Investigation.

Corresponding author

Correspondence to Wen-Chuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The detailed experimental results for sensitivity analysis of the parameter a are shown in Tables 4 and 5. The detailed experimental results for sensitivity analysis of the parameter R are shown in Tables 6 and 7.

The detailed experimental results comparing each improvement strategy are shown in Tables 8 and 9.

The detailed experimental results of comparison on CEC2014 and CEC2017 are shown in Tables 11, 12, 13, and 14.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WC., Tian, WC., Chau, KW. et al. MSBES: an improved bald eagle search algorithm with multi- strategy fusion for engineering design and water management problems. J Supercomput 81, 251 (2025). https://doi.org/10.1007/s11227-024-06727-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06727-0

Keywords