Skip to main content
Log in

Pattern synthesis of linear antenna-array for high gain and low sidelobe level based on sand cat swarm optimization algorithm

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This study presents a novel optimization method based on the sand cat swarm optimization (SCSO) algorithm for the pattern synthesis of linear antenna-array (LAA), aiming to obtain the high gain and low sidelobe level (SLL). The innovation of the proposed method consists in efficiently regulating the radiation characteristics of the LAA by optimizing the geometric and electrical parameters including the phase, amplitude, rotation and position based on the SCSO algorithm to achieve the desired radiation performances. The full-wave method of moments (MoM) is adopted to rigorously consider the mutual coupling effect among the array elements to guarantee the design accuracy. To demonstrate the feasibility and effectiveness of the SCSO algorithm, the proposed method is compared with three typical algorithms, including the Genetic Algorithm (GA), the Gray Wolf (GWO) algorithm, and the Particle Swarm Optimization (PSO). The results show that the SCSO algorithm demonstrates superior convergence capabilities while maintaining the high gain and low SLL, highlighting the potential as a robust method for the LAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Roy GG, Das S, Chakraborty P, Suganthan PN (2011) Design of non-uniform circular antenna-arrays using a modified invasive weed optimization algorithm. IEEE Trans Antennas Propag 59(1):110–118. https://doi.org/10.1109/TAP.2010.2090477

    Article  Google Scholar 

  2. Panduro MA, Covarrubias DH, Brizuela CA, Marante FR (2005) A multi-objective approach in the linear antenna array design. AEU-Int J Electron C 59(4):205–212. https://doi.org/10.1016/j.aeue.2004.11.017

    Article  Google Scholar 

  3. Panduro MA, Brizuela CA, Covarrubias DH (2008) Design of electronically steerable linear arrays with evolutionary algorithms. Appl Soft Comput 8(1):46–54. https://doi.org/10.1016/j.asoc.2006.10.011

    Article  Google Scholar 

  4. Poddar S, Paul P, Chakraborty A, Ram GD, Mandal D (2022) Design optimization of linear arrays and time-modulated antenna-arrays using meta-heuristics approach. Int J Numer Model-Electron Netw Devices Fields 35(5):3010. https://doi.org/10.1002/jnm.3010

    Article  Google Scholar 

  5. Pappula L, Ghos D (2014) Linear antenna-array synthesis using cat swarm optimization. AEU-Int J Electron Commun 68(6):540–549. https://doi.org/10.1016/j.aeue.2013.12.012

    Article  Google Scholar 

  6. Khodier M, Christodoulou C (2005) Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans Antennas Propag 53(8):2674–2679. https://doi.org/10.1109/TAP.2005.851762

    Article  Google Scholar 

  7. Bray MG, Werner DH, Boeringer DW, Machuga DW (2003) Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning. IEEE Trans Antennas Propag 50(12):1732–1742. https://doi.org/10.1109/TAP.2002.807947

    Article  Google Scholar 

  8. Panduro MA, Brizuela CA, Covarrubias DH, Lopez C (2006) A trade-off curve computation for linear antenna arrays using an evolutionary multi-objective approach. Soft Comput 10(2):125–131. https://doi.org/10.1007/s00500-004-0434-z

    Article  Google Scholar 

  9. Panduro MA (2007) Design of coherently radiating structures in a linear array geometry using genetic algorithms. AEU-Int J Electron C 61(8):515–520. https://doi.org/10.1016/j.aeue.2006.09.002

    Article  Google Scholar 

  10. Panduro MA (2006) Design of non-uniform linear phased arrays using genetic algorithms to provide maximum interference reduction capability in a wireless communication system. J Chin Inst Eng 29(7):1195–1201. https://doi.org/10.1080/02533839.2006.9671221

    Article  Google Scholar 

  11. Reyna Maldonado A, Panduro MA, Del Río C, Mendez A (2013) Design of concentric ring antenna array for a reconfigurable isoflux pattern. J Electromagn Waves Appl 27(12):1483–1495. https://doi.org/10.1080/09205071.2013.816877

    Article  Google Scholar 

  12. Toan TT, Tran NM, Giang TVB (2019) A novel chebyshev series fed linear array with high gain and low sidelobe level for wlan outdoor systems. Appl Comput Electromagn Soc J 34(8):1143–1151. https://doi.org/10.21553/rev-jec.187

    Article  Google Scholar 

  13. Sun GH, Wong H (2021) Millimeter-wave high-gain magneto-electric dipole antenna-array with pillbox corporate feed network. IEEE Trans Antennas Propag 69(9):5631–5639. https://doi.org/10.1109/TAP.2021.3069579

    Article  Google Scholar 

  14. Xu TM, Yao ML, Zhang FG, Wang XJ (2020) Design of low sidelobe series microstrip array antenna with non-uniform spacing and excitation amplitude. Electron Lett 56(21):1099. https://doi.org/10.1049/el.2020.1820

    Article  Google Scholar 

  15. Zhang QH, Shan Y, Shen ZY, Liu GX (2024) Planar antenna array synthesis for wireless power transmission based on brain storm optimization algorithm. Microw Opt Technol Lett 66(1):34016. https://doi.org/10.1002/mop.34016

    Article  Google Scholar 

  16. Bera R, Cheruvu S, Kundu K, Upadhyay P, Mandal D (2023) Array antenna pattern synthesis using improved particle swarm optimization (IPSO) algorithm. ECTI Trans Electr Eng Electron Commun 21(2):249806. https://doi.org/10.37936/ecti-eec.2023212.249806

    Article  Google Scholar 

  17. Panduro MA, Brizuela CA, Balderas LI, Acosta DA (2008) A comparison of genetic algorithms, particle warm optimization and the differential evolution method for the design of scannable circular antenna arrays. Prog Electromagn Res B 13(13):171–186. https://doi.org/10.2528/PIERB09011308

    Article  Google Scholar 

  18. Xu S, Wu KX, Zhou QJ, Liao SW, Xue Q (2023) Low-profile conical beam array antenna based on concentric annular planar inverted-f antenna elements. IEEE Antennas Wirel Propag Lett 22(7):1562–1566. https://doi.org/10.1109/LAWP.2023.3251324

    Article  Google Scholar 

  19. Gao RJ, Tang Y, Wang Q, Liu ST (2022) Gradient-based optimization method for interference suppression of linear arrays by the amplitude-only and phase-only control. Int J Microw Wirel Technol 14(8):1002–1008. https://doi.org/10.1017/S1759078721001355

    Article  Google Scholar 

  20. Yin LY, Jin C, Lv QH, Zhang BC, Cao KQ, Zhang PY, Xue ZH (2022) Amplitude and phase independently adjustable transmitarray aperture and its applications to high gain and low sidelobe antenna. IEEE Trans Antennas Propag 70(6):4498–4506. https://doi.org/10.1109/TAP.2022.3140498

    Article  Google Scholar 

  21. Gao RJ, Tang Y, Wang Q, Liu ST (2022) Pattern synthesis considering mutual coupling for peak sidelobe suppression and null controlling via element rotation and phase optimization. Eng Optim 54(1):101–112. https://doi.org/10.1080/0305215X.2020.1853716

    Article  Google Scholar 

  22. Peng Y, Liu YH, Li M, Liu HW, Guo YJ (2022) Synthesizing circularly polarized multi-beam planar dipole arrays with sidelobe and cross-polarization control by two-step element rotation and phase optimization. IEEE Trans Antennas Propag 70(6):4379–4391. https://doi.org/10.1109/TAP.2021.3138524

    Article  Google Scholar 

  23. Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  24. Cai X, Zhao HM, Shang SF, Zhou YQ, Deng W, Chen HY, Deng WQ (2021) An improved quantum-inspired cooperative co-evolution algorithm with muli-strategy and its application. Expert Syst Appl 171(1):114629. https://doi.org/10.1016/j.eswa.2021.114629

    Article  Google Scholar 

  25. Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37(2):106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005

    Article  Google Scholar 

  26. Bayraktar Z, Komurcu M, Werner DH (2010) Wind driven optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. IEEE Xplore. https://doi.org/10.1109/APS.2010.5562213

    Article  Google Scholar 

  27. Seyyedabbasi A, Kiani F (2022) Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Eng Comput 39(4):2627–2651. https://doi.org/10.1007/s00366-022-01604-x

    Article  Google Scholar 

  28. Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780195099713.001.0001

    Book  Google Scholar 

  29. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  30. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  31. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  32. Mirjalili S (2015) Dragonfly algorithm: a new metaheuristic optimization technique for solving single objective, discrete, and multi-objective problems. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  33. Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl-Based Syst 26:69–74. https://doi.org/10.1016/j.knosys.2011.07.001

    Article  Google Scholar 

  34. Li L, Zhao WW, Wang H, Xu ZW, Ding YL (2024) Sand cat swarm optimization based maximum power point tracking technique for photovoltaic system under partial shading conditions. Int J Electr Power Energy Syst 161(1):110203. https://doi.org/10.1016/j.ijepes.2024.110203

    Article  Google Scholar 

  35. Aghaei VT, Seyyedabbasi A, Rasheed J, Abu-Mahfouz AM (2023) Sand cat swarm optimization-based feedback controller design for nonlinear systems. Heliyon 9(3):13885. https://doi.org/10.1016/j.heliyon.2023.e13885

    Article  Google Scholar 

  36. Michaelchuck EC Jr, Lambrakos SG, Coburn W (2024) Near field scatter from a body of revolution. Appl Comput Electromagn Soc J. https://doi.org/10.13052/2024.ACES.J.390501

    Article  Google Scholar 

  37. Ni GY, Shen ZX, Shi JF (2015) Efficient computation of the impedance matrix of magnetic field integral equation for polyhedral conductors. IEEE Trans Antennas Propag 63(2):630–635. https://doi.org/10.1109/TAP.2014.2384036

    Article  MathSciNet  Google Scholar 

  38. Xiao L, Qu SW, Yang SW (2022) 3-D Printed dielectric dome array antenna with ±80° beam steering coverage. IEEE Trans Antennas Propag 70(11):10494–10503. https://doi.org/10.1109/TAP.2022.3195560

    Article  Google Scholar 

  39. Das A, Mandal D, Kar R (2022) An optimal far field radiation pattern synthesis of mutually coupled antenna-arrays. Int J RF Microwave Comput Aided Eng 32(7):23198. https://doi.org/10.1002/mmce.23198

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos: 5217051006), the Natural Science Foundation of Shandong Province (Grant Nos: ZR2021ME223), the Shandong Offshore Engineering Facility & Material Innovation Entrepreneurship Community Project (Grant Nos: GTP-2404) and the Yantai Science Technology Planning Project (Grant Nos: 2022GCCRC158).

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding authors

Correspondence to Jianhui Mou or Yangwei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, J., Wang, J., Wang, Y. et al. Pattern synthesis of linear antenna-array for high gain and low sidelobe level based on sand cat swarm optimization algorithm. J Supercomput 81, 318 (2025). https://doi.org/10.1007/s11227-024-06763-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06763-w

Keywords