Skip to main content

Advertisement

Log in

DPSMUNet: a new network based on a dual-pooling self-attention module for carotid artery plaque segmentation in ultrasound images

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Plaque segmentation in ultrasound images is essential for diagnosing carotid artery diseases but is hindered by challenges like noise, low contrast, and irregular plaque shapes. This paper proposes DPSMUNet, an enhanced UNet-based deep neural network incorporating a Dual Pooling Self-Attention Module (DPSM) and a Depthwise Separable Feedforward Network (DSFN). DPSM enables multi-scale global self-attention, while DSFN fuses semantic information across layers. Our experimental results, conducted on our carotid ultrasound image dataset as well as publicly available datasets (breast ultrasound image dataset and nerve ultrasound image dataset), demonstrate that DPSMUNet achieves strong performance across all metrics (DSC, IoU, recall, precision, parameter count, and inference time), with DSC, IoU, and recall being the most optimized. These findings suggest that DPSMUNet effectively segments plaque boundaries in carotid ultrasound images with relatively low computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Centers for Disease Control and Prevention, National Center for Health Statistics (2024) National Vital Statistics System, Mortality 2018-2022 on CDC WONDER Online Database. http://wonder.cdc.gov/ucd-icd10-expanded.html. Accessed on Sep 2, 2024 9:23:52 AM

  2. Gujjar AR (2018) Diabetes and stroke: More than just accelerated atherosclerosis? Sultan Qaboos Univ Med J 18(3):261

    Article  Google Scholar 

  3. Zarins CK, Xu C, Glagov S (2001) Atherosclerotic enlargement of the human abdominal aorta. Atherosclerosis 155(1):157–164

    Article  Google Scholar 

  4. Qian C, Yang X (2018) An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image. Comput Methods Programs Biomed 153:19–32

    Article  Google Scholar 

  5. Gao P, Chen Z-Q, Bao Y-H, Jiao L-Q, Ling F (2007) Correlation between carotid intraplaque hemorrhage and clinical symptoms: systematic review of observational studies. Stroke 38(8):2382–2390

    Article  Google Scholar 

  6. Jiao Y, Qin Y, Zhang Z, Zhang H, Liu H, Li C (2020) Early identification of carotid vulnerable plaque in asymptomatic patients. BMC Cardiovasc Disord 20:1–10

    Article  Google Scholar 

  7. Polak JF (2001) Carotid ultrasound. Radiol Clin North Am 39(3):569–589

    Article  Google Scholar 

  8. Pignoli P, Longo T (1988) Evaluation of atherosclerosis with b-mode ultrasound imaging. J Nucl Med Allied Sci 32(3):166–173

    Google Scholar 

  9. Faita F, Gemignani V, Bianchini E, Giannarelli C, Ghiadoni L, Demi M (2008) Real-time measurement system for evaluation of the carotid intima-media thickness with a robust edge operator. J Ultrasound Med 27(9):1353–1361

    Article  Google Scholar 

  10. Lee Y-B, Choi Y-J, Kim M-H (2010) Boundary detection in carotid ultrasound images using dynamic programming and a directional haar-like filter. Comput Biol Med 40(8):687–697

    Article  Google Scholar 

  11. Cheng D-C, Jiang X (2008) Detections of arterial wall in sonographic artery images using dual dynamic programming. IEEE Trans Inf Technol Biomed 12(6):792–799

    Article  Google Scholar 

  12. Ukwatta E, Awad J, Ward A, Buchanan D, Samarabandu J, Parraga G, Fenster A (2011) Three-dimensional ultrasound of carotid atherosclerosis: semiautomated segmentation using a level set-based method. Med Phys 38(5):2479–2493

    Article  Google Scholar 

  13. Ukwatta E, Yuan J, Buchanan D, Chiu B, Awad J, Qiu W, Parraga G, Fenster A (2013) Three-dimensional segmentation of three-dimensional ultrasound carotid atherosclerosis using sparse field level sets. Med Phys 40(5):052903

    Article  Google Scholar 

  14. Lekadir K, Galimzianova A, Betriu A, Mar Vila M, Igual L, Rubin DL, Fernández E, Radeva P, Napel S (2016) A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inform 21(1):48–55

    Article  Google Scholar 

  15. Mishra D, Chaudhury S, Sarkar M, Soin AS (2018) Ultrasound image segmentation: a deeply supervised network with attention to boundaries. IEEE Trans Biomed Eng 66(6):1637–1648

    Article  Google Scholar 

  16. Azzopardi C, Hicks YA, Camilleri KP (2017) Automatic carotid ultrasound segmentation using deep convolutional neural networks and phase congruency maps. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp 624–628. IEEE

  17. Kb J, Madian N (2018) Convolutional neural network for segmentation and measurement of intima media thickness. J Med Syst 42:1–8

    Google Scholar 

  18. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-assisted intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, pp 234–241

  19. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J (2018) Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer, pp 3–11

  20. Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett 15(5):749–753

    Article  Google Scholar 

  21. Jha D, Smedsrud PH, Riegler MA, Johansen D, De Lange T, Halvorsen P, Johansen HD (2019) Resunet++: an advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp 225–2255. IEEE

  22. Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y. et al (2021) Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306

  23. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst

  24. Dosovitskiy A (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929

  25. Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P (2021) Segformer: simple and efficient design for semantic segmentation with transformers. Adv Neural Inf Process Syst 34:12077–12090

    Google Scholar 

  26. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 10012–10022

  27. Xiao H, Li L, Liu Q, Zhu X, Zhang Q (2023) Transformers in medical image segmentation: a review. Biomed Signal Process Control 84:104791

    Article  Google Scholar 

  28. Xu G, Zhang X, He X, Wu X (2023) Levit-unet: Make faster encoders with transformer for medical image segmentation. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Springer, pp 42–53

  29. Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M (2022) Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision. Springer, pp 205–218

  30. Ibtehaz N, Rahman MS (2020) Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw 121:74–87

    Article  Google Scholar 

  31. Wang Z, Zou Y, Liu PX (2021) Hybrid dilation and attention residual u-net for medical image segmentation. Comput Biol Med 134:104449

    Article  Google Scholar 

  32. Lu H, She Y, Tie J, Xu S (2022) Half-unet: a simplified u-net architecture for medical image segmentation. Front Neuroinform 16:911679

    Article  Google Scholar 

  33. Lin D, Li Y, Nwe TL, Dong S, Oo ZM (2020) Refineu-net: Improved u-net with progressive global feedbacks and residual attention guided local refinement for medical image segmentation. Pattern Recogn Lett 138:267–275

    Article  Google Scholar 

  34. Zhang Z, Wu C, Coleman S, Kerr D (2020) Dense-inception u-net for medical image segmentation. Comput Methods Programs Biomed 192:105395

    Article  Google Scholar 

  35. Zhou R, Azarpazhooh MR, Spence JD, Hashemi S, Ma W, Cheng X, Gan H, Ding M, Fenster A (2021) Deep learning-based carotid plaque segmentation from b-mode ultrasound images. Ultrasound Med Biol 47(9):2723–2733

    Article  Google Scholar 

  36. Zhou R, Guo F, Azarpazhooh MR, Hashemi S, Cheng X, Spence JD, Ding M, Fenster A (2021) Deep learning-based measurement of total plaque area in b-mode ultrasound images. IEEE J Biomed Health Inform 25(8):2967–2977

    Article  Google Scholar 

  37. Jain PK, Sharma N, Giannopoulos AA, Saba L, Nicolaides A, Suri JS (2021) Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery b-mode ultrasound. Comput Biol Med 136:104721

    Article  Google Scholar 

  38. Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Laird JR, Nicolaides AN, Suri JS (2021) Unseen artificial intelligence-deep learning paradigm for segmentation of low atherosclerotic plaque in carotid ultrasound: A multicenter cardiovascular study. Diagnostics 11(12):2257

    Article  Google Scholar 

  39. Yin H, Shao Y (2023) Cfu-net: a coarse-fine u-net with multi-level attention for medical image segmentation. IEEE Trans Instrum Meas

  40. Hu H, Jin Z, Zhou Q, Guan Q, Chen Q (2023) Cti-unet: hybrid local features and global representations efficiently. In: 2023 IEEE International Conference on Image Processing (ICIP), pp 735–739. IEEE

  41. Li Y, Zhang Y, Liu J-Y, Wang K, Zhang K, Zhang G-S, Liao X-F, Yang G (2022) Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation. IEEE Trans Cybern 53(9):5826–5839

    Article  Google Scholar 

  42. Al Qurri A, Almekkawy M (2023) Improved unet with attention for medical image segmentation. Sensors 23(20):8589

    Article  Google Scholar 

  43. Guo H, Zhang H, Li M, Quan X (2023) Ltunet: A lightweight transformer-based unet with multi-scale mechanism for skin lesion segmentation. In: CAAI International Conference on Artificial Intelligence. Springer, pp 147–158

  44. Woo S, Park J, Lee J-Y, Kweon IS, et al (2018) Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 3–19

  45. Howard AG (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861

  46. Wang Z, Cun X, Bao J, Zhou W, Liu J, Li H (2022) Uformer: a general u-shaped transformer for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 17683–17693

  47. Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P (2021) Segformer: simple and efficient design for semantic segmentation with transformers. Adv Neural Inf Process Syst 34:12077–12090

    Google Scholar 

  48. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 4510–4520

  49. Touboul P-J, Hennerici M, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R et al (2012) Mannheim carotid intima-media thickness and plaque consensus (2004–2006-2011) an update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th european stroke conferences, mannheim, germany, 2004, brussels, belgium, 2006, and hamburg, germany, 2011. Cerebrovasc Dis 34(4):290–296

    Article  Google Scholar 

  50. Cheng J, Ye J, Deng Z, Chen J, Li T, Wang H, Su Y, Huang Z, Chen J, Jiang L, et al (2023) Sam-med2d. arXiv preprint arXiv:2308.16184

  51. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32

  52. Oktay O (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999

  53. Hao H, Zhao H, Huang D, An H, Wang D, Wang X, Zhang J (2024) A new network for carotid artery plaque segmentation in ultrasound images. In: Proceedings of the 2024 4th International Conference on Bioinformatics and Intelligent Computing, pp 119–126

Download references

Acknowledgements

Thanks to Dr. Meizhen Fu from Shanghai East Hospital for her contribution to the creation of the ground-truth segmentation maps. This study was funded by Medical discipline Construction Project of Pudong Health Committee of Shang-hai (Grant No. PWYgy2021-05).

Author information

Authors and Affiliations

Authors

Contributions

Wang Xiaolong and An Hedi wrote the main manuscript text and Zhang Jingsong reviewed and edited the writing. Huang Dongya supervised the draft preparation. Wen Junxian processed and checked the experimental data. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jinsong Zhang or Dongya Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., An, H., Zhang, J. et al. DPSMUNet: a new network based on a dual-pooling self-attention module for carotid artery plaque segmentation in ultrasound images. J Supercomput 81, 267 (2025). https://doi.org/10.1007/s11227-024-06770-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06770-x

Keywords