Skip to main content

Advertisement

Log in

Optimizing feature selection and remote sensing classification with an enhanced machine learning method

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In the era of rapidly expanding data volumes, the increasing dimensionality of features presents significant computational challenges, often degrading the performance of algorithms. Feature selection has emerged as a critical pre-processing step across various applications, aiming to identify and retain the most relevant features from datasets to enhance efficiency and accuracy. This study introduces an advanced wrapper-based feature selection approach, addressing key limitations of the original Grasshopper Optimization Algorithm (GOA), such as premature convergence and entrapment in local optima. The proposed Grasshopper Optimization Algorithm Harris Hawks Optimizer Lévy Flight (GHL) integrates two strategies: Lévy flight, which enhances the exploration phase by directing GOA toward promising regions of the search space, and Harris Hawks Optimizer techniques, which strengthen the exploitation phase to improve solution quality. Through three comprehensive experiments, the GHL algorithm demonstrated superior performance over nine comparative methods. The first experiment validated its efficacy in solving global optimization problems, achieving the best fitness values in most of the test functions. The second experiment highlighted its ability to effectively select relevant features across twenty benchmark datasets, achieving the best accuracy in 80% of the datasets. The third experiment applied GHL to remote sensing image classification, improving classification accuracy and yielding robust optimization outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author.

References

  1. Dhiman G, Oliva D, Kaur A, Singh KK, Vimal S, Sharma A, Cengiz K (2021) Bepo: a novel binary emperor penguin optimizer for automatic feature selection. Knowl-Based Syst 211:106560

    Article  Google Scholar 

  2. Tubishat M, Ja’afar S, Alswaitti M, Mirjalili S, Idris N, Ismail MA, Omar MS (2021) Dynamic salp swarm algorithm for feature selection. Expert Syst Appl 164:113873

    Article  Google Scholar 

  3. Ewees AA (2024) Harmony-driven technique for solving optimization and engineering problems. J Supercomput 80:17980–18008

    Article  MATH  Google Scholar 

  4. Karlupia N, Abrol P (2023) Wrapper-based optimized feature selection using nature-inspired algorithms. Neural Comput Appl 35(17):12675–12689.

    Article  MATH  Google Scholar 

  5. Vommi AM, Battula TK (2023) A hybrid filter-wrapper feature selection using fuzzy knn based on bonferroni mean for medical datasets classification: A covid-19 case study. Expert Syst Appl 218:119612

    Article  MATH  Google Scholar 

  6. Nutakki M, Mandava S (2023) Review on optimization techniques and role of artificial intelligence in home energy management systems. Eng Appl Artif Intell 119:105721

    Article  MATH  Google Scholar 

  7. Han S, Zhu K, Zhou MC, Alhumade H, Abusorrah A (2022) Locating multiple equivalent feature subsets in feature selection for imbalanced classification. IEEE Trans Knowl Data Eng 35(9):9195–9209

    Article  Google Scholar 

  8. Han S, Zhu K, Zhou M, Cai X (2022) Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection. IEEE Trans Syst Man Cybern Syst 52(12):7845–7857

    Article  MATH  Google Scholar 

  9. Ding H, Zhiyong W, Zhao L (2020) Whale optimization algorithm based on nonlinear convergence factor and chaotic inertial weight. Concurr Comput Pract Exp 32(24):e5949

    Article  MATH  Google Scholar 

  10. Ding H, Xu H, Wu Y, Li H, Gong M, Ma W, Miao Q, Shi J, Lei Y (2024) Evolutionary multitasking with two-level knowledge transfer for multi-view point cloud registration. In: Proceedings of the genetic and evolutionary computation conference, pp 304–312

  11. Elaziz MA, Yousri D, Aseeri AO, Abualigah L, Al-qaness MAA, Ewees AA (2024) Fractional-order modified heterogeneous comprehensive learning particle swarm optimizer for intelligent disease detection in iomt environment. Swarm Evol Comput 84:101430

    Article  MATH  Google Scholar 

  12. Hamdipour A, Basiri A, Zaare M, Mirjalili S (2025) Artificial rabbits optimization algorithm with automatically dbscan clustering algorithm to similarity agent update for features selection problems. J Supercomput 81(1):150

    Article  Google Scholar 

  13. Lei W, Jiawei W, Wang T (2023) Enhancing grasshopper optimization algorithm (goa) with levy flight for engineering applications. Sci Rep 13(1):124

    Article  MATH  Google Scholar 

  14. Pan J-S, Sun B, Chu S-C, Zhu M, Shieh C-S (2023) A parallel compact gannet optimization algorithm for solving engineering optimization problems. Mathematics 11(2):439

    Article  MathSciNet  MATH  Google Scholar 

  15. Haritha V, Jagan Babu J, Saranya R, Yogaraja CA, Rajalakshmi S, Manimegalai L (2023) Effective segmentation of brain tumors through the goa algorithm using deep learning. In: 2023 2nd international conference on applied artificial intelligence and computing (ICAAIC). IEEE, pp 389–395

  16. Ganesh B, Vincent S, Pathan S, Benitez SRG (2023) Integration of gis and machine learning techniques for mapping the landslide-prone areas in the state of Goa, india. J Indian Soc Remote Sens 51(7):1479–1491

    Article  Google Scholar 

  17. Zhang Y, An S, Liu H (2024) Employing the optimization algorithms with machine learning framework to estimate the compressive strength of ultra-high-performance concrete (uhpc). Multiscale Multidiscip Model Exp Des 7(1):97–108

    Article  MATH  Google Scholar 

  18. Hosseinzadeh M, Ahmed OH, Lansky J, Mildeova S, Yousefpoor MS, Yousefpoor E, Yoo J, Tightiz L, Rahmani AM (2023) A cluster-tree-based trusted routing algorithm using grasshopper optimization algorithm (goa) in wireless sensor networks (wsns). PLoS ONE 18(9):e0289173

    Article  Google Scholar 

  19. Zhu D, Wang L, Zhang H, Yang SX (2023) A Goa-based fault-tolerant trajectory tracking control for an underwater vehicle of multi-thruster system without actuator saturation. IEEE Trans Autom Sci Eng 21(1):771–782

    Article  MATH  Google Scholar 

  20. Hasanien HM, Alsaleh I, Tostado-Véliz M, Alassaf A, Alateeq A, Jurado F (2023) Optimal parameters estimation of lithium-ion battery in smart grid applications based on gazelle optimization algorithm. Energy 285:129509

    Article  Google Scholar 

  21. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172

    Article  MATH  Google Scholar 

  22. You M, Yuan A, He D, Li X (2023) Unsupervised feature selection via neural networks and self-expression with adaptive graph constraint. Pattern Recogn 135:109173

    Article  MATH  Google Scholar 

  23. Yang X, Xi X, Wang K, Sun L, Meng L, Nie X, Qiao L, Yin Y (2023) Triple-attention interaction network for breast tumor classification based on multi-modality images. Pattern Recogn 139:109526

    Article  MATH  Google Scholar 

  24. Algamal ZY, Qasim MK, Lee MH, Taha Mohammad Ali H (2021) Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression. Chemom Intell Lab Syst 208:104196

    Article  MATH  Google Scholar 

  25. Sharifai AG, Zainol ZB (2021) Multiple filter-based rankers to guide hybrid grasshopper optimization algorithm and simulated annealing for feature selection with high dimensional multi-class imbalanced datasets. IEEE Access 9:74127–74142

    Article  Google Scholar 

  26. Ali AH, Seyedali M, Hossam F, Ibrahim A, Majdi M, Huiling C (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  MATH  Google Scholar 

  27. Al-Betar MA, Awadallah MA, Heidari AA, Chen H, Al-Khraisat H, Li C (2021) Survival exploration strategies for Harris hawks optimizer. Expert Syst Appl 168:114243

    Article  MATH  Google Scholar 

  28. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify harris hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput 89:106018

    Article  MATH  Google Scholar 

  29. Zhang Y, Liu R, Wang X, Chen H, Li C (2020) Boosted binary harris hawks optimizer and feature selection. Eng Comput 37:3741–3770

    Article  MATH  Google Scholar 

  30. Gezici H, Livatyali H (2022) An improved harris hawks optimization algorithm for continuous and discrete optimization problems. Eng Appl Artif Intell 113:104952

    Article  MATH  Google Scholar 

  31. Liu J, Mao Y, Liu X, Li Yu (2020) A dynamic adaptive firefly algorithm with globally orientation. Math Comput Simul 174:76–101

    Article  MathSciNet  MATH  Google Scholar 

  32. Iacca G, Santos VC Jr, de Melo VV (2021) An improved jaya optimization algorithm with levy flight. Expert Syst Appl 165:113902

    Article  MATH  Google Scholar 

  33. Cui Z, Hou X, Zhou H, Lian W, Wu J (2020) Modified slime mould algorithm via levy flight. In: 2020 13th international congress on image and signal processing. BioMed Eng Informat (CISP-BMEI). IEEE, pp 1109–1113

  34. Jinran W, Wang Y-G, Burrage K, Tian Y-C, Lawson B, Ding Z (2020) An improved firefly algorithm for global continuous optimization problems. Expert Syst Appl 149:113340

    Article  MATH  Google Scholar 

  35. Khurma RA, Aljarah I, Sharieh A (2021) A simultaneous moth flame optimizer feature selection approach based on levy flight and selection operators for medical diagnosis. Arab J Sci Eng 46:8415–8440

    Article  MATH  Google Scholar 

  36. Liu Y, Cao B, Li H (2020) Improving ant colony optimization algorithm with epsilon greedy and levy flight. Complex Intell Syst 7(4):1711–1722

    Article  MATH  Google Scholar 

  37. Haize H, Liu J, Zhang X, Fang M (2023) An effective and adaptable k-means algorithm for big data cluster analysis. Pattern Recogn 139:109404

    Article  Google Scholar 

  38. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  MATH  Google Scholar 

  39. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  MATH  Google Scholar 

  40. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  MATH  Google Scholar 

  41. Sahlol AT, Kollmannsberger P, Ewees AA (2020) Efficient classification of white blood cell leukemia with improved swarm optimization of deep features. Sci Rep 10(1):1–11

    Article  Google Scholar 

  42. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  MATH  Google Scholar 

  43. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  MATH  Google Scholar 

  44. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  MATH  Google Scholar 

  45. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  MATH  Google Scholar 

  46. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  MATH  Google Scholar 

  47. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  48. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, volume 4. IEEE, pp 1942–1948

  49. Dua D, Graff C (2019) UCI machine learning repository. http://archive.ics.uci.edu/ml

  50. Minocha S, Singh B (2022) A novel phishing detection system using binary modified equilibrium optimizer for feature selection. Comput Electr Eng 98:107689

    Article  MATH  Google Scholar 

  51. Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M A-Z, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl-Based Syst 154:43–67

    Article  Google Scholar 

  52. Arora S, Singh H, Sharma M, Sharma S, Anand P (2019) A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. Ieee Access 7:26343–26361

    Article  MATH  Google Scholar 

  53. Mafarja M, Aljarah I, Faris H, Hammouri AI, Ala’M A-Z, Mirjalili S (2019) Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst Appl 117:267–286

    Article  Google Scholar 

  54. Ewees AA, Abualigah L, Yousri D, Algamal ZY, Al-qaness Mohammed AA, Ibrahim RA, Elaziz MA (2021) Improved slime mould algorithm based on firefly algorithm for feature selection: a case study on qsar model. Eng Comput, pp 1–15

  55. Arora S, Anand P (2019) Binary butterfly optimization approaches for feature selection. Expert Syst Appl 116:147–160

    Article  MATH  Google Scholar 

  56. Zhang H, Wang J, Sun Z, Zurada JM, Pal NR (2019) Feature selection for neural networks using group lasso regularization. IEEE Trans Knowl Data Eng 32(4):659–673

    Article  MATH  Google Scholar 

  57. Li X-D, Jie-Sheng Wang Yu, Liu H-MS, Wang Y-C, Hou J-N, Zhang M, Hao W-K (2024) Classification feature selection and dimensionality reduction based on logical binary sine-cosine function arithmetic optimization algorithm. Egypt Inform J 26:100472

    Article  MATH  Google Scholar 

  58. Zhang K, Liu Y, Wang X, Mei F, Kang H, Sun G (2024) Ibmrfo: improved binary manta ray foraging optimization with chaotic tent map and adaptive somersault factor for feature selection. Expert Syst Appl 251:123977

    Article  Google Scholar 

  59. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, pp 270–279

Download references

Acknowledgements

The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Ewees.

Ethics declarations

​Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Definition of the test functions

A Definition of the test functions

See Table 20.

Table 20 Definition of the test functions

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewees, A.A., Alshahrani, M.M., Alharthi, A.M. et al. Optimizing feature selection and remote sensing classification with an enhanced machine learning method. J Supercomput 81, 370 (2025). https://doi.org/10.1007/s11227-024-06790-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06790-7

Keywords

Navigation