Skip to main content

Advertisement

Log in

A storage-efficient learned indexing for blockchain systems using a sliding window search enhanced online gradient descent

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

With its promise of transparency, security, and decentralization, blockchain technology faces significant challenges related to data storage and query efficiency. Current indexing methods, which often rely on structures like Merkle trees and Patricia tries, contribute to excessive storage overhead and slower query responses, particularly for full nodes that maintain a complete copy of the blockchain. To address this, we introduce a novel-learned indexing approach for blockchain that utilizes a layered structure with a sliding window search enhanced Online Gradient Descent (SWS-OGD) as the inter-block index. The method was implemented across five distinct blockchain environments—Bitcoin, Ethereum, Dogecoin, Litecoin, and IoTeX. Experimental results demonstrate that the proposed method reduces storage costs by up to 99% compared to state-of-the-art approaches, requiring as little as 0.9 KB for 20,000 blocks-a substantial improvement over existing methods. Despite the significant reduction in storage costs, the SWS-OGD method maintains comparable performance in other key metrics, such as query latency. These results ensure that blockchain systems can handle large-scale data queries efficiently, maintaining high performance even as the blockchain grows in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The data used in this research will be made available upon request.

Code availability

The code used for the experiments will be made available upon request.

References

  1. Javaid M, Haleem A, Pratap Singh R, Khan S, Suman R (2021) Blockchain technology applications for industry 4.0: a literature-based review. Blockchain Res Appl 2(4):100027

    Article  Google Scholar 

  2. Gad AG, Mosa DT, Abualigah L, Abohany AA (2022) Emerging trends in blockchain technology and applications: a review and outlook. J King Saud Univ Comput Inf Sci 34(9):6719–6742. https://doi.org/10.1016/j.jksuci.2022.03.007

    Article  Google Scholar 

  3. Ali V, Norman AA, Azzuhri SRB (2023) Characteristics of blockchain and its relationship with trust. IEEE Access 11:15364–15374. https://doi.org/10.1109/ACCESS.2023.3243700

    Article  Google Scholar 

  4. Wang J, Chen W, Wang L, Sherratt RS, Alfarraj O, Tolba A (2020) Data secure storage mechanism of sensor networks based on blockchain. Comput Mater Continua 65(3):2365–2384

    Article  Google Scholar 

  5. Sunny J, Undralla N, Madhusudanan Pillai V (2020) Supply chain transparency through blockchain-based traceability: an overview with demonstration. Comput Ind Eng 150:106895. https://doi.org/10.1016/j.cie.2020.106895

    Article  Google Scholar 

  6. Zaabar B, Cheikhrouhou O, Jamil F, Ammi M, Abid M (2021) Healthblock: a secure blockchain-based healthcare data management system. Comput Netw 200:108500. https://doi.org/10.1016/j.comnet.2021.108500

    Article  Google Scholar 

  7. Hewa TM, Hu Y, Liyanage M, Kanhare SS (2021) Ylianttila M survey on blockchain-based smart contracts: technical aspects and future research. IEEE Access 9:87643–87662. https://doi.org/10.1109/ACCESS.2021.3068178

    Article  Google Scholar 

  8. Ameyaw PD, Vries WT (2021) Toward smart land management: land acquisition and the associated challenges in ghana a look into a blockchain digital land registry for prospects. Land. https://doi.org/10.3390/land10030239

    Article  Google Scholar 

  9. Musah S, Medeni TD, Soylu D (2019) Assessment of role of innovative technology through blockchain technology in ghana’s cocoa beans food supply chains. In: 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–12. https://doi.org/10.1109/ISMSIT.2019.8932936

  10. Gyimah KN, Asiedu E, Antwi F (2023) Adoption of blockchain technology in the banking sector of ghana: opportunities and challenges. Afr J Bus Manage 17(2):32–42

    Article  Google Scholar 

  11. Akrasi-Mensah NK, Tchao ET, Sikora A, Agbemenu AS, Nunoo-Mensah H, Ahmed A-R, Welte D, Keelson E (2022) An overview of technologies for improving storage efficiency in blockchain-based iiot applications. Electronics. https://doi.org/10.3390/electronics11162513

    Article  Google Scholar 

  12. XiaoJu H, XueQing G, ZhiGang H, LiMei Z, Kun G (2020) Ebtree: A b-plus tree based index for ethereum blockchain data. In: Proceedings of the 2020 Asia Service Sciences and Software Engineering Conference. ASSE ’20, pp. 83–90. Association for Computing Machinery, New York, NY, USA https://doi.org/10.1145/3399871.3399892

  13. Jia D-Y, Xin J-C, Wang Z-Q, Lei H, Wang G-R (2021) Se-chain: a scalable storage and efficient retrieval model for blockchain. J Comput Sci Technol 36(3):693–706. https://doi.org/10.1007/s11390-020-0158-2

    Article  Google Scholar 

  14. Zhu Y, Zhang Z, Jin C, Zhou A, Yan Y (2019) Sebdb: semantics empowered blockchain database. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1820–1831 https://doi.org/10.1109/ICDE.2019.00198

  15. Bitcoin blockchain size. https://ycharts.com/indicators/bitcoin_blockchain_size

  16. Li Y, Zheng K, Yan Y, Liu Q, Zhou X (2017) Etherql: A query layer for blockchain system. In: Candan S, Chen L, Pedersen TB, Chang L, Hua W (eds) Database Systems for Advanced Applications. Springer, Cham, pp 556–567

  17. Zhang Z, Zhong Y, Yu X (2021) Blockchain storage middleware based on external database. In: 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), pp. 1301–1304 https://doi.org/10.1109/ICSP51882.2021.9408752

  18. Pratama, F.A., Mutijarsa, K.: Query support for data processing and analysis on ethereum blockchain. In: 2018 International Symposium on Electronics and Smart Devices (ISESD), pp. 1–5 (2018). https://doi.org/10.1109/ISESD.2018.8605476

  19. Laishevskiy I, Barger A, Gorgadze V (2023) A journey towards the most efficient state database for hyperledger fabric. In: 2023 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 1–3 https://doi.org/10.1109/ICBC56567.2023.10174970

  20. Bragagnolo S, Marra M, Polito G, Gonzalez Boix E (2019) Towards scalable blockchain analysis. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), pp. 1–7 https://doi.org/10.1109/WETSEB.2019.00007

  21. El-Hindi M, Binnig C, Arasu A, Kossmann D, Ramamurthy R (2019) Blockchaindb: a shared database on blockchains. Proc VLDB Endow 12(11):1597–1609. https://doi.org/10.14778/3342263.3342636

    Article  Google Scholar 

  22. Helmer S, Roggia M, Ioini NE, Pahl C (2018) Ethernitydb - integrating database functionality into a blockchain. In: Benczúr A, Thalheim B, Horváth T, Chiusano S, Cerquitelli T, Sidló C, Revesz PZ (eds) New trends in databases and information systems. Springer, Cham, pp 37–44

    Chapter  Google Scholar 

  23. Sahoo MS, Baruah PK (2018) Hbasechaindb - a scalable blockchain framework on hadoop ecosystem. In: Yokota R, Wu W (eds) Supercomputing frontiers. Springer, Cham, pp 18–29

    Chapter  Google Scholar 

  24. Abuhashim A, Tan CC (2020) Smart contract designs on blockchain applications. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–4 https://doi.org/10.1109/ISCC50000.2020.9219622

  25. Thabet NA, Abdelbaki N (2021) Efficient quering blockchain applications. In: 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 365–369 https://doi.org/10.1109/NILES53778.2021.9600533

  26. Gürsoy G, Brannon CM, Gerstein M (2020) Using ethereum blockchain to store and query pharmacogenomics data via smart contracts. BMC Med Genomics 13(1):74. https://doi.org/10.1186/s12920-020-00732-x

    Article  Google Scholar 

  27. Chishti MS, Sufyan F, Banerjee A (2022) Decentralized on-chain data access via smart contracts in ethereum blockchain. IEEE Trans Netw Serv Manage 19(1):174–187. https://doi.org/10.1109/TNSM.2021.3120912

    Article  Google Scholar 

  28. Han J, Seo Y, Lee S, Kim S, Son Y (2023) Design and implementation of enabling sql –query processing for ethereum-based blockchain systems. Electronics. https://doi.org/10.3390/electronics12204317

    Article  Google Scholar 

  29. Mardiansyah V, Muis A, Sari RF (2023) Multi-state merkle patricia trie (msmpt): high-performance data structures for multi-query processing based on lightweight blockchain. IEEE Access 11:117282–117296. https://doi.org/10.1109/ACCESS.2023.3325748

    Article  Google Scholar 

  30. Huang T-L, Huang J (2022) An efficient storage structure and management for distributed ledgers in blockchain systems: an exploration based on purely theoretical approach. IEEE Trans Netw Serv Manage 19(4):3706–3723. https://doi.org/10.1109/TNSM.2022.3195246

    Article  Google Scholar 

  31. Liu M, Wang H, Yang F (2021) An efficient data query method of blockchain based on index. In: 2021 7th International Conference on Computer and Communications (ICCC), pp. 1539–1544 https://doi.org/10.1109/ICCC54389.2021.9674708

  32. Du P, Liu Y, Li Y, Yin H, Zhang L (2021) Etherh: A hybrid index to support blockchain data query. In: Proceedings of the ACM Turing Award Celebration Conference - China. ACM TURC ’21, pp. 72–76. Association for Computing Machinery, New York, NY, USA https://doi.org/10.1145/3472634.3472653

  33. Zeng L, Qiu W, Wang X, Wang H, Yao Y, Yu Z (2021) Transaction-based static indexing method to improve the efficiency of query on the blockchain. In: 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), pp. 780–784 https://doi.org/10.1109/ICAICA52286.2021.9497966

  34. Wan L (2021) A query optimization method of blockchain electronic transaction based on group account. In: Atiquzzaman M, Yen N, Xu Z (eds) Big data analytics for cyber-physical system in smart city. Springer, Singapore, pp 1358–1364

    Chapter  Google Scholar 

  35. Pei Q, Zhou E, Xiao Y, Zhang D, Zhao D (2020) An efficient query scheme for hybrid storage blockchains based on merkle semantic trie. In: 2020 International Symposium on Reliable Distributed Systems (SRDS), pp. 51–60 https://doi.org/10.1109/SRDS51746.2020.00013

  36. Ruan P, Dinh TTA, Lin Q, Zhang M, Chen G, Ooi BC (2021) Lineagechain: a fine-grained, secure and efficient data provenance system for blockchains. VLDB J 30(1):3–24. https://doi.org/10.1007/s00778-020-00646-1

    Article  Google Scholar 

  37. Zhu Y, Zhang Z, Jin C, Zhou A, Yan Y (2019) Sebdb: Semantics empowered blockchain database. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1820–1831 https://doi.org/10.1109/ICDE.2019.00198

  38. Xing X, Chen Y, Li T, Xin Y, Sun H (2021) A blockchain index structure based on subchain query. J Cloud Comput 10(1):52. https://doi.org/10.1186/s13677-021-00268-0

    Article  Google Scholar 

  39. Xu C, Zhang C, Xu J (2019) vchain: Enabling verifiable boolean range queries over blockchain databases. In: Proceedings of the 2019 International Conference on Management of Data. SIGMOD ’19, pp. 141–158. Association for Computing Machinery, New York, NY, USA https://doi.org/10.1145/3299869.3300083

  40. Hao K, Xin J, Wang Z, Yao Z, Wang G (2022) On efficient top-k transaction path query processing in blockchain database. Data Knowl Eng 141:102079. https://doi.org/10.1016/j.datak.2022.102079

    Article  Google Scholar 

  41. Kraska T, Beutel A, Chi EH, Dean J, Polyzotis N (2018) The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data. SIGMOD ’18, pp. 489–504. Association for Computing Machinery, New York, NY, USA https://doi.org/10.1145/3183713.3196909

  42. Ding J, Minhas UF, Yu J, Wang C, Do J, Li Y, Zhang H, Chandramouli B, Gehrke J, Kossmann D, Lomet D, Kraska T (2020) Alex: An updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. SIGMOD ’20, pp. 969–984. Association for Computing Machinery, New York, NY, USA https://doi.org/10.1145/3318464.3389711

  43. Ge J, Zhang H, Shi B, Luo Y, Guo Y, Chai Y, Chen Y, Pan A (2023) Sali: a scalable adaptive learned index framework based on probability models. Proc ACM Manag Data. https://doi.org/10.1145/3626752

    Article  Google Scholar 

  44. Zhang C, Xu C, Hu H, Xu J (2024) Cole: A column-based learned storage for blockchain systems (technical report)

  45. Yao Z, Xin J, Hao K, Wang Z, Zhu W (2023) Learned-index-based semantic keyword query on blockchain. Mathematics. https://doi.org/10.3390/math11092055

    Article  Google Scholar 

  46. Chang J, Li B, Xiao J, Lin L, Jin H (2023) Anole: a lightweight and verifiable learned-based index for time range query on blockchain systems. In: Wang X, Sapino ML, Han W-S, El Abbadi A, Dobbie G, Feng Z, Shao Y, Yin H (eds) Database systems for advanced applications. Springer, Cham, pp 519–534

    Chapter  Google Scholar 

  47. Hoi SCH, Sahoo D, Lu J, Zhao P (2021) Online learning: a comprehensive survey. Neurocomputing 459:249–289. https://doi.org/10.1016/j.neucom.2021.04.112

    Article  Google Scholar 

  48. Zhang J, Sun Y, Guo D, Luo L, Li L, Nian Q, Zhu S, Yang F (2024) A reputation awareness randomization consensus mechanism in blockchain systems. IEEE Internet Things J 11(20):32745–32758. https://doi.org/10.1109/JIOT.2024.3408846

    Article  Google Scholar 

  49. Hoi SCH, Sahoo D, Lu J, Zhao P (2021) Online learning: a comprehensive survey. Neurocomputing 459:249–289. https://doi.org/10.1016/j.neucom.2021.04.112

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Acheampong Asiamah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asiamah, E.A., Akrasi-Mensah, N.K., Odame, P. et al. A storage-efficient learned indexing for blockchain systems using a sliding window search enhanced online gradient descent. J Supercomput 81, 321 (2025). https://doi.org/10.1007/s11227-024-06805-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06805-3

Keywords