Skip to main content

Advertisement

Log in

Deep subspace clustering using dual self-expressiveness and convolutional fusion

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Deep subspace clustering methods use deep neural networks to project input data into the latent space, leveraging the inherent self-expressiveness (SE) properties of the data as a similarity metric to handle high-dimensional data effectively. However, existing methods focus solely on the SE relationships within the latent space, which constrains their capacity to capture subspace structures. To overcome this limitation, we introduce a novel deep subspace clustering method using dual self-expressiveness and convolutional fusion (DSCDC), which computes SE relationships in both the latent and input spaces. This dual-focus approach captures multi-source SE relationships, enhancing the quality of the SE matrix. Additionally, we designed a convolutional fusion module that effectively integrates the multiple SE matrices through a learnable fusion approach. Experimental results across various datasets validate the superiority of our DSCDC compared to competing methods. Ablation studies further confirm the effectiveness of the proposed modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Deng X, Huang D, Chen DH et al (2023) Strongly augmented contrastive clustering. Pattern Recogn 139:109470. https://doi.org/10.1016/j.patcog.2023.109470

    Article  MATH  Google Scholar 

  2. Ma X, Zhou Y, Wang H et al (2023) Image as set of points. In: The Eleventh International Conference on Learning Representations. https://doi.org/10.48550/arXiv.2303.01494

  3. Lin S, Yang A, Lai T et al (2023) Multi-motion segmentation via co-attention-induced heterogeneous model fitting. IEEE Trans Circuits Syst Video Technol. https://doi.org/10.1109/TCSVT.2023.3298319

    Article  MATH  Google Scholar 

  4. Hafeezallah A, Al-Dhamari A, Abu-Bakar SAR (2024) Motion segmentation using ward’s hierarchical agglomerative clustering for crowd disaster risk mitigation. Int J Disaster Risk Reduct 102:104262. https://doi.org/10.1016/j.ijdrr.2024.104262

    Article  Google Scholar 

  5. Yang B, Yang Y, Su X (2022) Deep structure integrative representation of multi-omics data for cancer subtyping. Bioinformatics 38(13):3337–3342. https://doi.org/10.1093/bioinformatics/btac345

    Article  MATH  Google Scholar 

  6. Yang B, Yang Y, Wang M et al (2023) Mrgcn: cancer subtyping with multi-reconstruction graph convolutional network using full and partial multi-omics dataset. Bioinformatics 39(6):btad353. https://doi.org/10.1093/bioinformatics/btad353

    Article  Google Scholar 

  7. Yang B, Xin TT, Pang SM et al (2021) Deep subspace mutual learning for cancer subtypes prediction. Bioinformatics 37(21):3715–3722. https://doi.org/10.1093/bioinformatics/btab625

    Article  MATH  Google Scholar 

  8. Ikotun AM, Ezugwu AE, Abualigah L et al (2023) K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf Sci 622:178–210. https://doi.org/10.1016/j.ins.2022.11.139

    Article  Google Scholar 

  9. Ran X, Xi Y, Lu Y et al (2023) Comprehensive survey on hierarchical clustering algorithms and the recent developments. Artif Intell Rev 56(8):8219–8264. https://doi.org/10.1007/s10462-022-10366-3

    Article  MATH  Google Scholar 

  10. Qu W, Xiu X, Chen H et al (2023) A survey on high-dimensional subspace clustering. Mathematics 11(2):436. https://doi.org/10.3390/math11020436

    Article  MATH  Google Scholar 

  11. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781. https://doi.org/10.1109/TPAMI.2013.57

    Article  MATH  Google Scholar 

  12. Liu G, Lin Z, Yan S et al (2012) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184. https://doi.org/10.1109/TPAMI.2012.88

    Article  MATH  Google Scholar 

  13. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416. https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  MATH  Google Scholar 

  14. Peng Z, Liu H, Jia Y et al (2022) Adaptive attribute and structure subspace clustering network. IEEE Trans Image Process 31:3430–3439. https://doi.org/10.1109/TIP.2022.3171421

    Article  MATH  Google Scholar 

  15. Patel VM, Vidal R (2014) Kernel sparse subspace clustering. In: 2014 IEEE International Conference on Image Processing (ICIP). IEEE, pp 2849–2853. https://doi.org/10.1109/ICIP.2014.7025576

  16. Sun M, Wang S, Zhang P et al (2021) Projective multiple kernel subspace clustering. IEEE Trans Multimed 24:2567–2579. https://doi.org/10.1109/TMM.2021.3086727

    Article  MATH  Google Scholar 

  17. Abdolali M, Gillis N (2021) Beyond linear subspace clustering: a comparative study of nonlinear manifold clustering algorithms. Comput Sci Rev 42:100435. https://doi.org/10.1016/j.cosrev.2021.100435

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren Y, Pu J, Yang Z et al (2024) Deep clustering: a comprehensive survey. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2024.3403155

    Article  MATH  Google Scholar 

  19. Ji P, Zhang T, Li H et al (2017) Deep subspace clustering networks. In: Advances in Neural Information Processing Systems, pp 23–32. https://doi.org/10.48550/arXiv.1709.02508

  20. Zhao L, Ma Y, Chen S et al (2023) Deep double self-expressive subspace clustering. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 1–5. https://doi.org/10.1109/ICASSP49357.2023.10095270

  21. Lv J, Kang Z, Lu X et al (2021) Pseudo-supervised deep subspace clustering. IEEE Trans Image Process 30:5252–5263. https://doi.org/10.1109/TIP.2021.3079800

    Article  MATH  Google Scholar 

  22. Vidal R, Favaro P (2014) Low rank subspace clustering (lrsc). Pattern Recogn Lett 43:47–61. https://doi.org/10.1016/j.patrec.2013.08.006

    Article  MATH  Google Scholar 

  23. You C, Robinson D, Vidal R (2016a) Scalable sparse subspace clustering by orthogonal matching pursuit. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3918–3927. https://doi.org/10.1109/CVPR.2016.425

  24. You C, Li CG, Robinson DP et al (2016b) Oracle based active set algorithm for scalable elastic net subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3928–3937. https://doi.org/10.1109/CVPR.2016.426

  25. Jia H, Zhu D, Huang L et al (2023) Global and local structure preserving nonnegative subspace clustering. Pattern Recogn 138:109388. https://doi.org/10.1016/j.patcog.2023.109388

    Article  MATH  Google Scholar 

  26. Wang J, Wu B, Ren Z et al (2024) Decomposed deep multi-view subspace clustering with self-labeling supervision. Inf Sci 653:119798. https://doi.org/10.1016/j.ins.2023.119798

    Article  Google Scholar 

  27. Qi T, Feng X, Gao B et al (2024) An end-to-end graph convolutional network for semi-supervised subspace clustering via label self-expressiveness. Knowl-Based Syst 286:111393. https://doi.org/10.1016/j.knosys.2024.111393

    Article  MATH  Google Scholar 

  28. Zhou P, Hou Y, Feng J (2018) Deep adversarial subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1596–1604. https://doi.org/10.1109/CVPR.2018.00172

  29. Zhang J, Li CG, You C et al (2019) Self-supervised convolutional subspace clustering network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5473–5482. https://doi.org/10.1109/CVPR.2019.00562

  30. Shopov VK, Markova VD (2021) Application of Hungarian algorithm for assignment problem. In: 2021 International Conference on Information Technologies (InfoTech). IEEE, pp 1–4. https://doi.org/10.1109/InfoTech52438.2021.9548600

Download references

Acknowledgements

This work was supported by Natural Science Basic Research Program of Shaanxi (2024JC-YBMS-473), Key Scientific Research Program of Education Department of Shaanxi Provincial Government (22JS019), and Xi’an Major Scientific and Technological Achievements Transformation Industrialization Project (23CGZHCYH0008).

Author information

Authors and Affiliations

Authors

Contributions

ML and BY wrote the main manuscript text. TX and SH are respectively responsible for reviewing and drawing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yang, B., Xue, T. et al. Deep subspace clustering using dual self-expressiveness and convolutional fusion. J Supercomput 81, 390 (2025). https://doi.org/10.1007/s11227-024-06885-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06885-1

Keywords