Skip to main content

Advertisement

Log in

Convergent data-driven workflows for open radiation calculations: an exportable methodology to any field

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The fast growth worldwide of linkable scientific datasets supposes significant challenges in their management and reuse. Large experiments, such as the Latin American Giant Observatory, generate volumes of data that can benefit other kinds of studies. In this sense, there is a modular ecosystem of external radiation tools that should harvest and supply datasets without being part of the main pipeline. Workflows for personal dose estimation, muongraphy in volcanology or mining, or aircraft dose calculations are built with different privacy policies and exploitation licenses. Every numerical method has its own requirements and only parts could make use of the Collaboration’s resources, which implies the convergence with other computing infrastructures. Our work focuses on developing an agnostic methodology to address these challenges while promoting open science. Leveraging the encapsulation of software in nested containers, where the inner layers accomplish specific standardization slices and calculations, the wrapper compiles metadata and data generated and publishes them. All this allows researchers to build a data-driven computer continuum that complies with the findable, accessible, interoperable, and reusable principles. The approach has been successfully tested in the computer-demanding field of radiation-matter interaction with humans, showing the orchestration with the regular pipeline for diverse applications. Moreover, it has been integrated into public or federated cloud environments as well as into local clusters and personal computers to ensure the portability and scalability of the simulations. We postulate that this successful use case can be customized to any other field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

As described in the text, the datasets generated and analyzed during the current study are available in B2Find repository of the LAGO Collaboration, https://b2find.eudat.eu/organization/lago. The ARTI, onedataSim, and Meiga codes are publicly available in their respective GitHub repositories: https://github.com/lagoproject/arti, https://github.com/lagoproject/onedataSim, and https://github.com/ataboadanunez/meiga.

References

  1. Sheffield RL, Barnes CW, Tapia JP (2018) Matter-Radiation Interactions in Extremes (MaRIE) Project Overview. In: Proc. of International Free Electron Laser Conference (FEL’17), Santa Fe, NM, USA, August 20-25, 2017. International Free Electron Laser Conference, pp. 24–28. JACoW, Geneva, Switzerland. https://doi.org/10.18429/JACoW-FEL2017-MOD06

  2. Harris JA, Chu R, Couch SM, Dubey A, Endeve E, Georgiadou A, Jain R, Kasen D, Laiu MP, Messer OB et al (2022) Exascale models of stellar explosions: quintessential multi-physics simulation. Int J High Perform Comput Appl 36(1):59–77. https://doi.org/10.1177/10943420211027937

    Article  Google Scholar 

  3. Sciences E (2018) Medicine: open science by design: realizing a vision for 21st century Research. The National Academies Press, Washington, DC

    Google Scholar 

  4. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, Silva Santos LB, Bourne PE et al (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3(1):160018. https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

  5. Rubio-Montero AJ, Pagán-Muñoz R, et al. (2021) A Novel Cloud-Based Framework For Standardized Simulations In The Latin American Giant Observatory (LAGO). In: 2021 Winter Simulation Conference (WSC), December 12th-15th, Phoenix, USA, pp. 1–12. https://doi.org/10.1109/WSC52266.2021.9715360 . IEEE Press

  6. Suárez-Durán M, Asorey H, et al. (2015) The LAGO Space Weather Program: Directional Geomagnetic Effects, Background Fluence Calculations and Multi-Spectral Data Analysis. In: 34th ICRC, The Hague, The Netherlands, pp. 2015–142. https://doi.org/10.22323/1.236.0142

  7. Sidelnik I, Asorey H et al (2017) Neutron detection using a water Cherenkov detector with pure water and a single PMT. Nucl Instrum Meth Phys Res Sec A Accelerators Spectrom Detectors Associat Equipment 876:153–155. https://doi.org/10.1016/j.nima.2017.02.048

    Article  MATH  Google Scholar 

  8. Sidelnik I (2015) The Sites of the Latin American Giant Observatory. In: 34th ICRC, The Hague, The Netherlands, pp. 2015–665

  9. Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, Glover A, Gopalswamy N, Grande M, Hapgood M, Heynderickx D et al (2015) Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55(12):2745–2807. https://doi.org/10.1016/j.asr.2015.03.023

    Article  Google Scholar 

  10. Sarmiento-Cano C, Suárez-Durán M, Calderón-Ardila R et al (2022) The ARTI framework: cosmic rays atmospheric background simulations. Eur Phys J C 82:1019. https://doi.org/10.1140/epjc/s10052-022-10883-z

    Article  Google Scholar 

  11. Núñez-Chongo O, Carretero M, Mayo-García R, Asorey H (2023) The Cloud-Based Implementation and Standardization of Anthropomorphic Phantoms and Their Applications. In: 2023 Winter Simulation Conference (WSC), December 10th–13th, San Antonio, Texas, USA, pp. 2932–2943. https://doi.org/10.1109/WSC60868.2023.10407511 . IEEE Press

  12. Rubio-Montero AJ, Pagán-Muñoz R, et al. (2021) The EOSC-Synergy cloud services implementation for the Latin American Giant Observatory (LAGO). In: 37th ICRC, vol. 395. Berlin, Germany, pp. 2021–261. https://doi.org/10.22323/1.395.0261

  13. Pérez-Bertolli C, Sarmiento-Cano C, Asorey H (2022) Muon flux estimation in the ANDES underground laboratory. Anales AFA 32:106–111. https://doi.org/10.31527/analesafa.2021.32.4.99

    Article  MATH  Google Scholar 

  14. Taboada A, Sarmiento-Cano C, Sedoski A, Asorey H (2022) Meiga, a dedicated framework used for muography applications. J Adv Instrument Sci 2022:266. https://doi.org/10.31526/jais.2022.266

    Article  Google Scholar 

  15. Peña-Rodríguez J, Salgado-Meza PA, Asorey H, Núñez LA, Núñez-Castiñeyra A, Sarmiento-Cano C, Suárez-Durán M (2022) RACIMO@Bucaramanga: a Citizen Science Project on Data Science and Climate Awareness. https://doi.org/10.48550/arXiv.2203.05431

  16. Vesga-Ramírez A, Sanabria-Gómez JD, Sierra-Porta D, Arana-Salinas L, Asorey H, Kudryavtsev VA, Calderón-Ardila R, Núñez LA (2021) Simulated Annealing for volcano muography. J S Am Earth Sci 109:103248. https://doi.org/10.1016/j.jsames.2021.103248

    Article  Google Scholar 

  17. Asorey H, Mayo-García R (2023) Calculation of the high energy neutron flux for anticipating errors and recovery techniques in exascale supercomputer centres. J Supercomput 79:8205–8235. https://doi.org/10.1007/s11227-022-04981-8

    Article  MATH  Google Scholar 

  18. Large M, Malaroda A, Petasecca M, Rosenfeld A, Guatelli S (2020) Modelling ICRP110 adult reference voxel phantoms for dosimetric applications: development of a new Geant4 advanced example. In: Journal of Physics: Conference Series, vol. 1662, p. 012021. https://doi.org/10.1088/1742-6596/1662/1/012021 . IOP Publishing

  19. Asorey H (2013) The LAGO Solar Project. In: 33th ICRC, Rio de Janeiro, Brazil, pp. 1–4

  20. Santos NA, Dasso S, Gulisano AM, Areso O, Pereira M, Asorey H, Rubinstein L, collaboration L et al (2023) First measurements of periodicities and anisotropies of cosmic ray flux observed with a water-Cherenkov detector at the Marambio Antarctic base. Adv Space Res 71(6):2967–2976. https://doi.org/10.1016/j.asr.2022.11.041

    Article  Google Scholar 

  21. Asorey H, Sidelnik I (2022) LAGO Data and Metadata Release. Rights and Disclaimer Zenodo. https://doi.org/10.5281/zenodo.6599863

  22. Desorgher L, Flückiger EO, B ütikofer R, Moser MR (2003) Geant4 application for simulating the propagation of cosmic rays through the Earth’s magnetosphere. In: 28th International Cosmic Ray Conference (ICRC), vol. 7, p. 4281

  23. Heck D, Knapp J, et al. (1998) CORSIKA: A Monte Carlo code to simulate extensive air showers. Technical Report FZKA-6019, Forschungszentrum Karlsruhe (February 1998)

  24. Agostinelli S et al (2003) GEANT4: a Simulation toolkit. Nucl Instrum Meth A506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  MATH  Google Scholar 

  25. Calderón-Ardila R, Jaimes-Motta A, et al. (2019) Modeling the LAGO’s detectors response to secondary particles at ground level from the Antarctic to Mexico. In: 36th ICRC, Madison, WI, U.S.A, pp. 2019–412. https://pos.sissa.it/358/412/pdf

  26. Grisales-Casadiegos J, Sarmiento-Cano C, Núñez LA (2022) Impact of global data assimilation system atmospheric models on astroparticle showers. Can J Phys 100(3):152–157. https://doi.org/10.1139/cjp-2020-056

    Article  Google Scholar 

  27. Asorey H, Núñez LA, Suárez-Durán M (2018) preliminary results from the latin american giant observatory space weather simulation chain. Space Weather 16(5):461–475. https://doi.org/10.1002/2017SW001774 (https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017SW001774)

    Article  Google Scholar 

  28. Allison J et al (2016) Recent developments in Geant4. Nucl. Instrum. and Meth. A: Accelerators, Spectrometers. Detect Associat Equipment 835:186–225. https://doi.org/10.1016/j.nima.2016.06.125

    Article  MATH  Google Scholar 

  29. Luoni F, Boscolo D, Fiore G, Bocchini L, Horst F, Reidel C-A, Schuy C, Cipriani C, Binello A, Baricco M et al (2022) Dose attenuation in innovative shielding materials for radiation protection in space: measurements and simulations. Radiat Res 198(2):107–119. https://doi.org/10.1667/RADE-22-00147.1

    Article  Google Scholar 

  30. Taboada A, et al. (2023) Meiga, a Dedicated Framework Used for Muography Applications - Public Repository. https://github.com/ataboadanunez/meiga/

  31. Asorey H, Suárez-Durán M, Mayo-García R (2023) ACORDE: a new application for estimating the dose absorbed by passengers and crews in commercial flights. Appl Radiat Isot 196:110752. https://doi.org/10.1016/j.apradiso.2023.110752

    Article  Google Scholar 

  32. Núñez-Chongo O, Carretero M, Mayo-García R, Asorey H (2024) Advancing Neutron Safety and Dosimetry in Nuclear Facilities: Applications and Current Status of the Development of NEREIDA. In: 2024 Winter Simulation Conference (WSC), December 15th–18th, Orlando, Florida, USA, p.. IEEE Press

  33. Rubio-Montero AJ, Huedo E, Castejón F, Mayo-García R (2015) GWpilot: enabling multi-level scheduling in distributed infrastructures with GridWay and pilot jobs. Futur Gener Comput Syst 45:25–52. https://doi.org/10.1016/j.future.2014.10.003

    Article  Google Scholar 

  34. McNab A, Stagni F, Luzzi C (2015) Lhcb experience with running jobs in virtual machines. J Phys Conf Ser 664(2):022030. https://doi.org/10.1088/1742-6596/664/2/022030

    Article  Google Scholar 

  35. Promberger L, Blomer J, Völkl V, Harvey M (2024) Cernvm-fs at extreme scales. EPJ Web of Conf 295:04012. https://doi.org/10.1051/epjconf/202429504012

    Article  Google Scholar 

  36. HEPData: The High Energy Physics Data Repository. http://www.hepdata.net. Accessed: 2024-06-16

  37. Couturier B (2024) Lepton Flavour Universality and Analysis Frameworks Presented 25 Mar 2024. Presented 25 Mar. https://hdl.handle.net/11392/2543590

  38. Lamanna G (2024) The escape collaboration. In: 26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023). EPJ Web of Conferences, 295:10007. https://doi.org/10.1051/epjconf/202429510007

  39. Brancato V, Esposito G, Coppola L et al (2024) Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine. J Transl Med 22:136 (10.1186/s12967-024-04891-8)

    Article  MATH  Google Scholar 

  40. Kondylakis H, Kalokyri V, Sfakianakis S et al (2023) Data infrastructures for ai in medical imaging: a report on the experiences of five eu projects. Eur Radiol Exp 7:20. https://doi.org/10.1186/s41747-023-00336-x

    Article  Google Scholar 

  41. Kalaycı EG, et al. (2020) Semantic Integration of Bosch Manufacturing Data Using Virtual Knowledge Graphs. In: The Semantic Web – ISWC 2020. Lecture Notes in Computer Science, vol. 12507, pp. 456–472. Springer, ???. https://doi.org/10.1007/978-3-030-62466-8-29

  42. Peters D, Schindler S (2024) FAIR for digital twins. CEAS Space J 16:367–374. https://doi.org/10.1007/s12567-023-00506-y

    Article  MATH  Google Scholar 

  43. Rubio-Montero AJ, Asorey H, et al. (2022) The LAGO Data Management Plan. https://lagoproject.github.io/DMP/, v.1.1 (June 2022)

  44. GÉANT Collaboration: EduTeams. https://eduteams.org/ (2021)

  45. LAGO AAI: LAGO Authentication Portal. Accessed: 16-Dec-2024 (2024). https://mms.eduteams.org/fed/registrar/?vo=LAGO-AAI

  46. GRNET and EGI Fundation: EGI Check-in. https://www.egi.eu/service/check-in/ (2022)

  47. EGI Operations Portal: LAGO Project Virtual Organization Details. Accessed: 16-Dec-2024 (2024). https://operations-portal.egi.eu/vo/view/voname/lagoproject.net

  48. CYFRONET and EGI Fundation: EGI DataHub. https://www.egi.eu/service/datahub/ (2022)

  49. EGI DataHub: EGI DataHub Portal. Accessed: 16-Dec-2024 (2024). https://datahub.egi.eu

  50. Zamani, Themis and Weigel, Tobias: B2HANDLE. https://eudat.eu/services/userdoc/b2handle, v. 1.0 (November 2016)

  51. Martens C, Demleitner M (2022) B2find - searching for research data across disciplines. In: E-Science-Tage 2021: Share Your Research Data, 395:196–207. https://doi.org/10.11588/heibooks.979.c13729

  52. Calatrava A, Asorey H, Astalos J et al (2023) A survey of the European Open Science Cloud services for expanding the capacity and capabilities of multidisciplinary scientific applications. Comput Sci Rev 49:100571. https://doi.org/10.1016/j.cosrev.2023.100571

    Article  Google Scholar 

  53. European Grid Infrastructure: EGI FedCloud. https://www.egi.eu/egi-infrastructure/ (2022)

  54. Caballer M, Blanquer I, Moltó CG, de Alfonso C (2015) Dynamic management of virtual infrastructures. J Grid Comput 13(1):53–70. https://doi.org/10.1007/s10723-014-9296-5

    Article  MATH  Google Scholar 

  55. Calatrava A, Romero E, Caballer M, Moltó G, Alonso JM (2016) Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Futur Gener Comput Syst 61:13–25. https://doi.org/10.1016/j.future.2016.01.018

    Article  Google Scholar 

  56. Gamma-Scout GmbH & Co. KG: Gamma-Scout. Measures Radioactivity Easily and Reliably. (2022). www.gamma-scout.com

  57. Copeland K (2017) Cari-7a: development and validation. Radiation Protection Dosimetry 175:419–431

    MATH  Google Scholar 

  58. EGI Accounting Portal: Summary of Cloud Elapsed Processors for Virtual Organizations (2021-2024). Accessed: 16-Dec-2024 (2024). https://accounting.egi.eu/cloud/sum_elap_processors-year/VO/Year/2021/1/2024/9/top10/onlyinfrajobs/

  59. Sidelnik I, Otiniano L, Sarmiento-Cano C, Sacahui JR, Asorey H, Rubio-Montero AJ, Mayo-Garcia R (2023) The capability of water Cherenkov detectors arrays of the LAGO project to detect Gamma-Ray Burst and high energy astrophysics sources. Nucl Instrum Methods Phys Res, Sect A 1056:168576. https://doi.org/10.1016/j.nima.2023.168576

    Article  Google Scholar 

  60. Otiniano L, Taboada A, Asorey H, Sidelnik I, Castromonte C, Fauth A (2023) Measurement of the muon lifetime and the Michel spectrum in the LAGO water Cherenkov detectors as a tool to enhance the signal-to-noise ratio. Nucl Instrum Methods Phys Res, Sect A 1056:168567. https://doi.org/10.1016/j.nima.2023.168567

    Article  Google Scholar 

  61. Torres Peralta TJ, Molina MG, Asorey H, Sidelnik I, Rubio-Montero AJ, Dasso S, Mayo-Garcia R, Taboada A, Otiniano L (2024) LAGO collaboration: enhanced particle classification in water cherenkov detectors using machine learning: modeling and validation with monte carlo simulation datasets. Atmosphere. https://doi.org/10.3390/atmos15091039

    Article  Google Scholar 

  62. LAGO Collaboration: LAGO Organization in B2FIND. Accessed: 16-Dec-2024 (2024). https://b2find.eudat.eu/organization/lago

  63. LAGO Collaboration: LAGO Dataset in B2FIND. Accessed: 16-Dec-2024 (2024). https://b2find.eudat.eu/dataset/fcf60ccb-923f-540e-a749-230214875cd3

  64. LAGO Collaboration: High-Energy Astrophysics Data Repository (Handle). Accessed: 16-Dec-2024 (2024). http://hdl.handle.net/21.12145/lvSIHpk

  65. Sidelnik I, Asorey H, Collaboration L et al (2017) LAGO: the Latin American giant observatory. Nucl Instrum Methods Phys Res, Sect A 876:173–175. https://doi.org/10.1016/j.nima.2017.02.069

    Article  MATH  Google Scholar 

  66. Moghaddasi L, Bezak E (2018) Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components. Australasian Phys & Eng Sci Med 41(1):129–141. https://doi.org/10.1007/s13246-018-0617-z

    Article  MATH  Google Scholar 

  67. Okuno S, Hirai A, Fukumoto N (2022) Performance Analysis of Multi-Containerized MD Simulations for Low-Level Resource Allocation. In: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, pp. 1014–1017. https://doi.org/10.1109/IPDPSW55747.2022.00162

  68. Moríñigo JA, García-Muller P, Rubio-Montero AJ et al (2020) Performance drop at executing communication-intensive parallel algorithms. J. Supercomput. 76:6834–6859. https://doi.org/10.1007/s11227-019-03142-8

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has profited from computing resources provided by CIEMAT at Madrid (Xula supercomputer) and Trujillo (Turgalium supercomputer), funded with ERDF funds. It has also been partially funded by the European Commission through their Horizon Europe Programme projects EU-LAC ResInfra Plus (no. 101131703), DECODE (no. 101091974), and RISEnergy (no. 101131793), by the Spanish CSN project NEREIDA and by the CyTED TIC network “LAGO-INDICA: INfraestructura DIgital de Ciencia Abierta” (no. 524RT0159). O.N.C. acknowledge for the financial support received from the Community of Madrid through the grant for “Personal Investigador Predoctoral en Formación” (no. PIPF-2022/TEC-24326).

Funding

This work has been partially funded by the co-funded Spanish Ministry of Science and Innovation project CODEC-OSE (RTI2018-096006-B-I00) with European Regional Development Fund (ERDF) funds. It has also been partially funded by the European Commission through their Horizon Europe Programme projects EU-LAC ResInfra Plus (no. 101131703), DECODE (no. 101091974), and RISEnergy (no. 101131793), by the Spanish CSN project NEREIDA and by the CyTED TIC network “Lago-indica: infraestructura digital de ciencia abierta”(no. 524RT0159). O.N.C. is grateful for the financial support received from the Community of Madrid through the grant for “Personal Investigador Predoctoral en Formación” (PIPF-2022/TEC-24326).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work and reviewed the manuscript.

Corresponding author

Correspondence to Osiris Núñez-Chongo.

Ethics declarations

Conflict of interest

Not applicable.

Ethics approval

Not applicable.

Consent to participate

All authors agreed to participate.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez-Chongo, O., Asorey, H., Rubio-Montero, A.J. et al. Convergent data-driven workflows for open radiation calculations: an exportable methodology to any field. J Supercomput 81, 465 (2025). https://doi.org/10.1007/s11227-024-06894-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06894-0

Keywords