Skip to main content

Advertisement

Log in

Multi-strategy enhanced dandelion optimizer based on elliptic approximation strategy and adaptive fitness-distance-similarity balance for solar photovoltaic parameter estimation

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The dandelion optimizer (DO) is an advanced swarm intelligence algorithm, but still exhibits certain limitations. This paper proposes an enhanced DO named EFDO. Firstly, a hybrid piecewise logistic-circle map is proposed to generate a uniform and high-quality initial population with superior ergodicity and diversity. Secondly, based on elliptic curves, we propose a novel approximation strategy for the first time, and integrate it into the DO, which improves the solution accuracy, and effectively assists the algorithm in avoiding entrapment in local optima. Thirdly, we innovatively incorporate a new similarity metric operator into the original fitness-distance balance method, creating a novel selection strategy named adaptive fitness-distance-similarity balance. This new strategy can effectively explore potential excellent solutions, increase the diversity and prevent premature convergence. EFDO achieves better performance compared against twelve algorithms on the CEC2017 benchmark functions and six engineering problems. Finally, EFDO is applied to parameter estimation of photovoltaic models, underscoring its application capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Algorithm 2
Fig. 4
Fig. 5
Algorithm 3
Fig. 6
Algorithm 4
Fig. 7
Algorithm 5
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Abdel-Basset M, Mohamed R, Jameel M, Abouhawwash M (2023) Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif Intell Rev 56:11675–11738

    Article  MATH  Google Scholar 

  2. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408

    Article  Google Scholar 

  3. Aboud A, Rokbani N, Fdhila R, Qahtani AM, Almutiry O, Dhahri H, Hussain A, Alimi AM (2022) DPb-MOPSO: a dynamic pareto bi-level multi-objective particle swarm optimization algorithm. Appl Soft Comput 129:109622

    Article  Google Scholar 

  4. Abualigah L, Almotairi KH, Elaziz MA (2023) Multilevel thresholding image segmentation using meta-heuristic optimization algorithms: comparative analysis, open challenges and new trends. Appl Intell 53:11654–11704

    Article  MATH  Google Scholar 

  5. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  MATH  Google Scholar 

  6. Agrawal P, Abutarboush HF, Ganesh T, Mohamed AW (2021) Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019). IEEE Access 9:26766–26791

    Article  Google Scholar 

  7. Al-Betar MA, Alyasseri ZAA, Awadallah MA, Abu Doush I (2021) Coronavirus herd immunity optimizer (chio). Neural Comput Appl 33:5011–5042

    Article  Google Scholar 

  8. Allam D, Yousri D, Eteiba M (2016) Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Convers Manage 123:535–548

    Article  MATH  Google Scholar 

  9. Aribowo W, Suprianto B, Prapanca A (2023) A novel modified dandelion optimizer with application in power system stabilizer. Int J Artif Intell 12:2033–2041

    Google Scholar 

  10. Arora JS (2004) Introduction to optimum design. Elsevier

    Book  MATH  Google Scholar 

  11. Arora S, Anand P (2019) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 31:4385–4405

    Article  MATH  Google Scholar 

  12. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8:239–287

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen Z, Song D (2023) Modeling landslide susceptibility based on convolutional neural network coupling with metaheuristic optimization algorithms. Int J Digit Earth 16:3384–3416

    Article  MATH  Google Scholar 

  14. Cheng JW, Zhang F, Li XY (2022) Nonlinear amplitude inversion using a hybrid quantum genetic algorithm and the exact Zoeppritz equation. Pet Sci 19:1048–1064

    Article  MATH  Google Scholar 

  15. Cheng L, Ling G, Liu F, Ge MF (2024) Application of uniform experimental design theory to multi-strategy improved sparrow search algorithm for UAV path planning. Expert Syst Appl 255:124849

    Article  MATH  Google Scholar 

  16. Cornuéjols G (2008) Valid inequalities for mixed integer linear programs. Math Program 112:3–44

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehghani M, Montazeri Z, Trojovská E, Trojovskỳ P (2023) Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl-Based Syst 259:110011

    Article  MATH  Google Scholar 

  18. Dehkordi AA, Sadiq AS, Mirjalili S, Ghafoor KZ (2021) Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application. Appl Soft Comput 109:107574

    Article  MATH  Google Scholar 

  19. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  MATH  Google Scholar 

  20. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  MATH  Google Scholar 

  21. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Article  MATH  Google Scholar 

  22. Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C (1986) Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int J Sol Energy 4:1–12

    Article  Google Scholar 

  23. Ebeed M, Mostafa A, Aly MM, Jurado F, Kamel S (2023) Stochastic optimal power flow analysis of power systems with wind/PV/TCSC using a developed Runge Kutta optimizer. Int J Electr Power Energy Syst 152:109250

    Article  Google Scholar 

  24. El-Naggar KM, AlRashidi M, AlHajri M, Al-Othman A (2012) Simulated annealing algorithm for photovoltaic parameters identification. Sol Energy 86:266–274

    Article  Google Scholar 

  25. Galli L, Lin CJ (2021) A study on truncated newton methods for linear classification. IEEE Trans Neural Netw Learn Syst 33:2828–2841

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao S, Wang K, Tao S, Jin T, Dai H, Cheng J (2021) A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Convers Manage 230:113784

    Article  MATH  Google Scholar 

  27. Ghazi GA, Al-Ammar EA, Hasanien HM, Ko W, Park J, Kim D, Ullah Z (2024) Dandelion optimizer-based reinforcement learning techniques for mPPT of grid-connected photovoltaic systems. IEEE Access 12:42932–42948

    Article  Google Scholar 

  28. Gupta S, Abderazek H, Yıldız BS, Yildiz AR, Mirjalili S, Sait SM (2021) Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems. Expert Syst Appl 183:115351

    Article  MATH  Google Scholar 

  29. Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2022) Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math Comput Simul 192:84–110

    Article  MathSciNet  MATH  Google Scholar 

  30. Hassanat A, Almohammadi K, Alkafaween E, Abunawas E, Hammouri A, Prasath VS (2019) Choosing mutation and crossover ratios for genetic algorithms-a review with a new dynamic approach. Information 10:390

    Article  Google Scholar 

  31. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  MATH  Google Scholar 

  32. Ho SY, Shu LS, Chen JH (2004) Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Trans Evol Comput 8:522–541

    Article  MATH  Google Scholar 

  33. Holland JH (1992) Genetic algorithms. Sci Am 267:66–73

    Article  MATH  Google Scholar 

  34. Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731

    Article  MATH  Google Scholar 

  35. Hu G, Du B, Li H, Wang X (2022) Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation. Math Comput Simul 200:428–467

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu G, Zheng Y, Abualigah L, Hussien AG (2023) Detdo: an adaptive hybrid dandelion optimizer for engineering optimization. Adv Eng Inform 57:102004

    Article  MATH  Google Scholar 

  37. Ishaque K, Salam Z et al (2011) A comprehensive matlab simulink PV system simulator with partial shading capability based on two-diode model. Sol Energy 85:2217–2227

    Article  MATH  Google Scholar 

  38. Jia H, Lu C (2024) Guided learning strategy: a novel update mechanism for metaheuristic algorithms design and improvement. Knowl-Based Syst 286:111402

    Article  MATH  Google Scholar 

  39. Kahraman HT, Akbel M, Duman S, Kati M, Sayan HH (2022) Unified space approach-based dynamic switched crowding (DSC): a new method for designing pareto-based multi/many-objective algorithms. Swarm Evol Comput 75:101196

    Article  MATH  Google Scholar 

  40. Kahraman HT, Aras S, Gedikli E (2020) Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms. Knowl-Based Syst 190:105169

    Article  MATH  Google Scholar 

  41. Kalita K, Ramesh JVN, Cepova L, Pandya SB, Jangir P, Abualigah L (2024) Multi-objective exponential distribution optimizer (MOEDO): a novel math-inspired multi-objective algorithm for global optimization and real-world engineering design problems. Sci Rep 14:1816

    Article  Google Scholar 

  42. Kaveh A, Zaerreza A, Zaerreza J (2023) Enhanced dandelion optimizer for optimum design of steel frames. Iran J Sci Technol, Trans Civ Eng 47:2591–2604

    Article  MATH  Google Scholar 

  43. Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl 149:113338

    Article  Google Scholar 

  44. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput 56:100693

    Article  MATH  Google Scholar 

  45. Li S, Gong W, Yan X, Hu C, Bai D, Wang L (2019) Parameter estimation of photovoltaic models with memetic adaptive differential evolution. Sol Energy 190:465–474

    Article  MATH  Google Scholar 

  46. Liang J, Qiao K, Yu K, Ge S, Qu B, Xu R, Li K (2020) Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Sol Energy 207:336–346

    Article  Google Scholar 

  47. Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning: a literature review. Swarm Evol Comput 39:1–23

    Article  MATH  Google Scholar 

  48. Marini F, Walczak B (2015) Particle swarm optimization (pso). a tutorial. Chemom Intell Lab Syst 149:153–165

    Article  MATH  Google Scholar 

  49. Merrikh-Bayat F (2015) The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput 33:292–303

    Article  MATH  Google Scholar 

  50. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  MATH  Google Scholar 

  51. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  MATH  Google Scholar 

  52. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  MATH  Google Scholar 

  53. Miyazawa M (2002) Chaos and entropy for circle maps. Tokyo J Math 25:453–458

    Article  MathSciNet  MATH  Google Scholar 

  54. Naruei I, Keynia F (2021) A new optimization method based on coot bird natural life model. Expert Syst Appl 183:115352

    Article  MATH  Google Scholar 

  55. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11:3658–3670

    Article  MATH  Google Scholar 

  56. Nunes H, Pombo J, Bento P, Mariano S, Calado M (2019) Collaborative swarm intelligence to estimate PV parameters. Energy Convers Manage 185:866–890

    Article  Google Scholar 

  57. Osaba E, Villar-Rodriguez E, Del Ser J, Nebro AJ, Molina D, LaTorre A, Suganthan PN, Coello CAC, Herrera F (2021) A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm Evol Comput 64:100888

    Article  MATH  Google Scholar 

  58. Pavlidis T (1983) Curve fitting with conic splines. ACM Trans Graph (TOG) 2:1–31

    Article  MATH  Google Scholar 

  59. Ram JP, Manghani H, Pillai DS, Babu TS, Miyatake M, Rajasekar N (2018) Analysis on solar PV emulators: a review. Renew Sustain Energy Rev 81:149–160

    Article  Google Scholar 

  60. Safaeian Hamzehkolaei N, Miri M, Rashki M (2016) An enhanced simulation-based design method coupled with meta-heuristic search algorithm for accurate reliability-based design optimization. Eng Comput 32:477–495

    Article  MATH  Google Scholar 

  61. Service TC (2010) A no free lunch theorem for multi-objective optimization. Inf Process Lett 110:917–923

    Article  MathSciNet  MATH  Google Scholar 

  62. Ss VC, Hs A (2022) Nature inspired meta heuristic algorithms for optimization problems. Computing 104:251–269

    Article  MathSciNet  MATH  Google Scholar 

  63. Tekcan A, Ozkoç A, Gezer B, Bizim O (2008) Elliptic curves, conics and cubic congruences associated with indefinite binary quadratic forms. Novi Sad J Math 38:71–81

    MathSciNet  MATH  Google Scholar 

  64. Tian Z, Gai M (2024) Football team training algorithm: a novel sport-inspired meta-heuristic optimization algorithm for global optimization. Expert Syst Appl 245:123088

    Article  MATH  Google Scholar 

  65. Tong NT, Pora W (2016) A parameter extraction technique exploiting intrinsic properties of solar cells. Appl Energy 176:104–115

    Article  MATH  Google Scholar 

  66. Tubishat M, Al-Obeidat F, Sadiq AS, Mirjalili S (2023) An improved dandelion optimizer algorithm for spam detection: next-generation email filtering system. Computers 12:196

    Article  MATH  Google Scholar 

  67. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  MATH  Google Scholar 

  68. Wang Y, Liu Z, Ma J, He H (2016) A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn 83:2373–2391

    Article  MathSciNet  MATH  Google Scholar 

  69. Wu G, Mallipeddi R, Suganthan P (2016) Problem definitions and evaluation criteria for the cec 2017 competition and special session on constrained single objective real-parameter optimization. Nanyang Technol. Univ., Singapore, Tech. Rep , 1–18

  70. Yang B, Wang J, Zhang X, Yu T, Yao W, Shu H, Zeng F, Sun L (2020) Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification. Energy Convers Manage 208:112595

    Article  MATH  Google Scholar 

  71. Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2022) Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng Comput 38:4207–4219

    Article  MATH  Google Scholar 

  72. Zhang J, Xiao M, Gao L, Pan Q (2018) Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Appl Math Model 63:464–490

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhao S, Zhang T, Ma S, Chen M (2022) Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications. Eng Appl Artif Intell 114:105075

    Article  MATH  Google Scholar 

  74. Zheng B, Chen Y, Wang C, Heidari AA, Liu L, Chen H (2024) The moss growth optimization (MGO): concepts and performance. J Comput Des Eng 11:184–221

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Jilin Province, China, Grant/Award Number: YDZJ202501ZYTS664, Education Department of Jilin Province project Grant/Award Number: JJKH20220662KJ, National Natural Science Foundation of China Grant/Award Number: 12026430 and Department of Science and Technology of Jilin Province project Grant/Award Number: 20210101149JC, 20200403182SF.

Author information

Authors and Affiliations

Authors

Contributions

Tianbao Liu: Methodology, Conceptualization, Investigation, Validation, Formal analysis, Funding acquisition, Supervision, Writing—review & editing. Zhe Feng: Formal analysis, Writing—original draft, Software, Validation, Visualization, Investigation, Data curation.

Corresponding author

Correspondence to Tianbao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Feng, Z. Multi-strategy enhanced dandelion optimizer based on elliptic approximation strategy and adaptive fitness-distance-similarity balance for solar photovoltaic parameter estimation. J Supercomput 81, 458 (2025). https://doi.org/10.1007/s11227-024-06899-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06899-9

Keywords