Skip to main content

Advertisement

Log in

Using deep learning on microscopic images for white blood cell detection and segmentation to assist in leukemia diagnosis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Early and accurate diagnosis of leukemia is essential to increase the chances of successful treatment. However, manual analysis of bone marrow cells is a time-consuming process prone to errors. With advancements in health technologies, automating the detection of leukemic cells has become indispensable to accelerating and improving diagnostic accuracy. This study proposes the Y-YOLOv10 model, which combines Principal Component Analysis (PCA) to reduce the dimensionality of images and the YOLOv10 model for real-time detection, distinguishing 12 types of white blood cells. To enhance the diversity and robustness of training, six public datasets were combined, resulting in a comprehensive and representative dataset. Additionally, seven advanced data augmentation techniques were applied, including rotation, zoom, blurring, noise addition, contrast adjustment, horizontal and vertical flips, and cropping. These techniques were used alongside the original data, generating realistic variations and improving the model’s ability to handle real-world laboratory scenarios. Furthermore, H.264 compression artifacts were introduced during training to simulate conditions of reduced image quality, making the Y-YOLOv10 robust to variations in acquisition quality. The Y-YOLOv10 achieved average performances of 96.85% accuracy, 95.21% recall, and 96.76% F1-score, outperforming methods such as YOLOv8 and ResNet50. Additionally, H.264 compression allowed for a 30–40% reduction in data size while maintaining high performance and faster processing times. This study highlights the potential of lightweight deep learning models to improve leukemia classification, reduce the workload of specialists, and ensure a robust and adaptable system for various application conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets used in this work were extracted from the literature, as described in Sect. 6.

Code availability

Code can be obtained upon request from the authors.

References

  1. Ahirwar D, Nigam R, Parmar D (2018) A study of leukemias profile in central India. Trop J Pathol Microbiol 4(2):2456

    Article  MATH  Google Scholar 

  2. Cancer IA (2020) GLOBOCAN 2020: New Global Cancer Data. Accessed: 2023-10-01. https://gco.iarc.fr

  3. Deng H, Huang Y, Gao J, Wang X (2020) Global burden of Leukemia: a systematic analysis for the global burden of disease study 2017. Lancet Haematol 7(4):285–295

    MATH  Google Scholar 

  4. ...Ferlay J, Colombet M, Spirit A, He F, Mathers C, Chaudhry R, Graham L, Jacobs T, Kibaki N, Kumar G, Gonzalez P, Zheng R, Howlader N, Torre L, LortetTieulent J, Meyer L, Jimenez A, Van Dyke B, Sharma R, You W, Brezinova H, Etzioni R, Cohen A, Jemal A (2020) Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2020. Int J Cancer 149(4):47–54

    Google Scholar 

  5. Talaat FM, Gamel SA (2024) Machine learning in detection and classification of Leukemia using c-nmc_Leukemia. Multimed Tools Appl 83(3):8063–8076

    Article  MATH  Google Scholar 

  6. Chatap N, Shibu S (2014) Analysis of blood samples for counting leukemia cells using support vector machine and nearest neighbour. IOSR J Comput Eng 16(5):79–87

    Article  Google Scholar 

  7. Vaghela HP, Modi H, Pandya M, Potdar M (2015) Leukemia detection using digital image processing techniques. Int J Appl Inf Syst 10(1):43–51

    Google Scholar 

  8. Chourasiya S, Rani GU (2014) Automatic red blood cell counting using watershed segmentation. Hemoglobin 14:17

    Google Scholar 

  9. Joshi MD, Karode AH, Suralkar S (2013) White blood cells segmentation and classification to detect acute Leukemia. Int J Emerg Trends Technol Comput Sci (IJETTCS) 2(3):147–151

    Google Scholar 

  10. Ahmed N, Yigit A, Isik Z, Alpkocak A (2019) Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics 9(3):104

    Article  Google Scholar 

  11. Hegde RB, Prasad K, Hebbar H, Singh BMK, Sandhya I (2020) Automated decision support system for detection of leukemia from peripheral blood smear images. J Digit Imaging 33:361–374

    Article  Google Scholar 

  12. Das NN, Kumar N, Kaur M, Kumar V, Singh D (2022) Automated deep transfer learning-based approach for detection of covid-19 infection in chest x-rays. Irbm 43(2):114–119

    Article  MATH  Google Scholar 

  13. Jiwani N, Gupta K, Pau G, Alibakhshikenari M (2023) Pattern recognition of acute lymphoblastic Leukemia (all) using computational deep learning. IEEE Access 11:29541–29553

    Article  Google Scholar 

  14. Ram M, Afrash MR, Moulaei K, Parvin M, Esmaeeli E, Karbasi Z, Heydari S, Sabahi A (2024) Application of artificial intelligence in chronic myeloid leukemia (cml) disease prediction and management: a scoping review. BMC Cancer 24(1):1026

    Article  Google Scholar 

  15. Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R et al (2023) The role of bone marrow microenvironment (bmm) cells in acute myeloid leukemia (aml) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 21(1):252

    Article  Google Scholar 

  16. Odetola O, Ma S (2023) Relapsed/refractory chronic lymphocytic leukemia (cll). Curr Hematol Malig Rep 18(5):130–143

    Article  Google Scholar 

  17. Negm AS, Hassan OA, Kandil AH (2018) A decision support system for acute Leukaemia classification based on digital microscopic images. Alex Eng J 57(4):2319–2332

    Article  MATH  Google Scholar 

  18. Adjouadi M, Ayala M, Cabrerizo M, Zong N, Lizarraga G, Rossman M (2010) Classification of leukemia blood samples using neural networks. Ann Biomed Eng 38:1473–1482

    Article  MATH  Google Scholar 

  19. Ghaderzadeh M, Asadi F, Hosseini A, Bashash D, Abolghasemi H, Roshanpour A (2021) Machine learning in detection and classification of leukemia using smear blood images: a systematic review. Sci Program 2021(1):9933481

    Google Scholar 

  20. Ehrenstein V, Nielsen H, Pedersen AB, Johnsen SP, Pedersen L (2017) Clinical epidemiology in the era of big data: new opportunities, familiar challenges. Clin Epidemiol, 245–250

  21. Anilkumar K, Manoj V, Sagi T (2020) A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybern Biomed Eng 40(4):1406–1420

    Article  MATH  Google Scholar 

  22. Das PK, Diya V, Meher S, Panda R, Abraham A (2022) A systematic review on recent advancements in deep and machine learning based detection and classification of acute lymphoblastic Leukemia. IEEE Access 10:81741–81763

    Article  Google Scholar 

  23. Elhassan TAM, Rahim MSM, Swee TT, Hashim SZM, Aljurf M (2022) Feature extraction of white blood cells using cmyk-moment localization and deep learning in acute myeloid Leukemia blood smear microscopic images. IEEE Access 10:16577–16591

    Article  Google Scholar 

  24. Das PK, Meher S (2021) An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia. Expert Syst Appl 183:115311

    Article  MATH  Google Scholar 

  25. Jawahar M, Sharen H, Gandomi AH et al (2022) Alnett: a cluster layer deep convolutional neural network for acute lymphoblastic Leukemia classification. Comput Biol Med 148:105894

    Article  Google Scholar 

  26. Khan S, Sajjad M, Abbas N, Escorcia-Gutierrez J, Gamarra M, Muhammad K (2024) Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network. Comput Biol Med 174:108146

    Article  MATH  Google Scholar 

  27. Huang M, Wang B, Wan J, Zhou C (2023) Improved blood cell detection method based on yolov5 algorithm. In: 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 6, pp. 992–996. IEEE

  28. Haq I, Khan MT, Sadique U et al (2023) An intelligent approach for blood cell detection employing faster rcnn. Pakistan J Eng Technol 6(1):1–6

    Article  MATH  Google Scholar 

  29. Das PK, Sahoo B, Meher S (2022) An efficient detection and classification of acute leukemia using transfer learning and orthogonal softmax layer-based model. IEEE/ACM Trans Comput Biol Bioinf 20(3):1817–1828

    Article  MATH  Google Scholar 

  30. Çınar A, Tuncer SA (2021) Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid alexnet-googlenet-svm. SN Appl Sci 3:1–11

    Article  MATH  Google Scholar 

  31. Agustin RI, Arif A, Sukorini U (2021) Classification of immature white blood cells in acute lymphoblastic Leukemia l1 using neural networks particle swarm optimization. Neural Comput Appl 33(17):10869–10880

    Article  MATH  Google Scholar 

  32. Wu Y, Gao D, Fang Y, Xu X, Gao H, Ju Z (2023) Sde-yolo: a novel method for blood cell detection. Biomimetics 8(5):404

    Article  MATH  Google Scholar 

  33. Zhu Z, Wang S-H, Zhang Y-D (2023) Rernet: a deep learning network for classifying blood cells. Technol Cancer Res Treat 22:15330338231165856

    Article  Google Scholar 

  34. HemaSri A, Sreenidhi MD, Chaitanya VVK, Vasanth G, Mohan VM, Satish T (2023) Detection of rbcs, wbcs, platelets count in blood sample by using deep learning. In: 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), pp. 47–51. IEEE

  35. Batool A, Byun Y-C (2023) Lightweight efficientnetb3 model based on depthwise separable convolutions for enhancing classification of leukemia white blood cell images. IEEE Access 11:37203–37215

    Article  Google Scholar 

  36. Hameed MA et al (2021) Alnet: a novel approach for the classification of blood cells using deep learning. J Med Syst 45(6):1–11. https://doi.org/10.1007/s10916-021-01793-0

    Article  MATH  Google Scholar 

  37. Sandler M, et al (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520. IEEE

  38. He K, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778

  39. Wang C et al (2021) Sde-yolo: a feature fusion approach in yolov5 for foreground detection. IEEE Access 9:132645–132659. https://doi.org/10.1109/ACCESS.2021.3113960

    Article  MATH  Google Scholar 

  40. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 28. arxiv:1506.01497

  41. Lee Y-L, Han K-H, Sullivan GJ (2006) Improved lossless intra coding for h. 264/mpeg-4 avc. IEEE Trans Image Process 15(9):2610–2615

    Article  MATH  Google Scholar 

  42. Sheng B, Gao W, Wu D (2004) An implemented architecture of deblocking filter for h. 264/avc. In: 2004 International Conference on Image Processing, 2004. ICIP’04., vol. 1, pp. 665–668. IEEE

  43. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the h. 264/avc video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  44. Sullivan GJ, Topiwala PN, Luthra A (2004) The h. 264/avc advanced video coding standard: Overview and introduction to the fidelity range extensions. Applications of Digital Image Processing XXVII 5558, 454–474

  45. Kurita T (2019) Principal component analysis (pca). Computer vision: a reference guide, 1–4

  46. Uddin MP, Mamun MA, Hossain MA (2021) Pca-based feature reduction for hyperspectral remote sensing image classification. IETE Tech Rev 38(4):377–396

    Article  MATH  Google Scholar 

  47. Hui C, Zhou Y (2021) Research on equipment failure prediction based on pca-bp neural network. Logistics Eng Manag 43(6):150–153

    MATH  Google Scholar 

  48. Radhakrishnan R, Thirunavukkarasu M, Thandaiah Prabu R, Ramkumar G, Saravanakumar S, Gopalan A, Rama Lahari V, Anusha B, Ahammad SH, Rashed ANZ et al (2024) Pixel reduction of high-resolution image using principal component analysis. J Indian Soc Remote Sens 52(2):315–326

    Article  Google Scholar 

  49. Qiu X, Chen Y, Cai W, Niu M, Li J (2024) Ld-yolov10: a lightweight target detection algorithm for drone scenarios based on yolov10. Electronics 13(16):3269

    Article  Google Scholar 

  50. Acevedo A, Merino González A, Alférez Baquero ES, Molina Borrás Á, Boldú Nebot L, Rodellar Benedé J (2020) A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data in Brief 30:105474

    Article  Google Scholar 

  51. Rezatofighi SH, Soltanian-Zadeh H (2011) Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph 35(4):333–343

    Article  MATH  Google Scholar 

  52. Gan S (2018) Bccd dataset

  53. Kouzehkanan ZM, Saghari S, Tavakoli S, Rostami P, Abaszadeh M, Mirzadeh F, Satlsar ES, Gheidishahran M, Gorgi F, Mohammadi S et al (2022) A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm. Sci Rep 12(1):1123

    Article  Google Scholar 

  54. Matek C, Schwarz S, Marr C, Spiekermann K (2019) A single-cell morphological dataset of leukocytes from aml patients and non-malignant controls. Cancer Imaging Archive

  55. Elaoua A, Nadour M, Cherroun L, Elasri A (2023) Real-time people counting system using yolov8 object detection. In: 2023 2nd International Conference on Electronics, Energy and Measurement (IC2EM), vol. 1, pp. 1–5. IEEE

  56. Prabhu BB, Lakshmi R, Ankitha R, Prateeksha M, Priya N (2022) Rescuenet: Yolo-based object detection model for detection and counting of flood survivors. Model Earth Syst Environ 8(4):4509–4516

    Article  MATH  Google Scholar 

  57. Wang A, Chen H, Liu L, Chen K, Lin Z, Han J, Ding G (2024) Yolov10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458

  58. Talaat FM, Gamel SA (2023) A2m-leuk: attention-augmented algorithm for blood cancer detection in children. Neural Comput Appl 35(24):18059–18071

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the research, writing and review of this article.

Corresponding author

Correspondence to Fernando Rodrigues Trindade Ferreira.

Ethics declarations

Conflict of interest

The corresponding author states that there is no Conflict of interest on behalf of all authors.

Consent for publication

The authors agree to publish this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, F.R.T., do Couto, L.M. Using deep learning on microscopic images for white blood cell detection and segmentation to assist in leukemia diagnosis. J Supercomput 81, 410 (2025). https://doi.org/10.1007/s11227-024-06903-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06903-2

Keywords