Skip to main content

Advertisement

Log in

Joint computation offloading and resource allocation in multi-cell MEC networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A widely studied typical mobile edge computing (MEC) system consists of a cloud server, several edge servers, and some user equipment. Each MEC system is also referred to as a cell. In a multi-cell network, there are several different cells, and the cloud servers in different cells can be connected. In this paper, we consider the problem of offloading computing tasks crossing cells in a multi-cell network to improve the user’s quality of experience (QoE). We first investigate a cross-cell task binary computation offloading and resource allocation model for optimizing QoE and formulate this optimization problem as a mixed-integer nonlinear programming (MINLP). Then, for the offline case, we design an efficient exact algorithm (DGOSS) that can find the optimal computation offloading and resource allocation. For the online case, we devise an online algorithm (DTE-DOL) with a sub-linear bounded regret under dynamic computing task generation, dynamic server quota, and uncertain server-side information assumptions. The online algorithm adopts the multi-user Multi-Armed Bandit technique and distributed auction technique. Finally, we compare the performance of the proposed algorithms on different instances with previously existing algorithms. Experimental results show that for the offline case, the DGOSS algorithm can improve the QoE by approximately 5% with about 37.75% less running time, while for the online case, the DTE-DOL algorithm can significantly improve the QoE by around 18.75% with almost the same running time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The device parameter data in the mobile edge computing network come from the server purchase website (https://ecs-buy.aliyun.com). The parameter data of the computation offloading task are set randomly. Please refer to the website (https://github.com/xiaoqimu/Multi-cell-MEC-networks) for details.

Notes

  1. https://cloud.tencent.com/document/product/213/6091.

  2. https://ecs-buy.aliyun.com.

References

  1. Huang J, Duan Q, Xing C, Wang H (2017) Topology control for building a large-scale and energy-efficient internet of things. IEEE Wirel Commun 24(1):67–73. https://doi.org/10.1109/MWC.2017.1600193WC

    Article  MATH  Google Scholar 

  2. Huang J, Xing C, Wang C (2017) Simultaneous wireless information and power transfer: technologies, applications, and research challenges. IEEE Commun Mag 55(11):26–32. https://doi.org/10.1109/MCOM.2017.1600806

    Article  MATH  Google Scholar 

  3. Ning Z, Hu X, Chen Z, Zhou M, Hu B, Cheng J, Obaidat MS (2018) A cooperative quality-aware service access system for social internet of vehicles. IEEE Internet Things J 5(4):2506–2517. https://doi.org/10.1109/JIOT.2017.2764259

    Article  MATH  Google Scholar 

  4. Hayes B (2008) Cloud computing. Commun ACM 51(7):9–11. https://doi.org/10.1145/1364782.1364786

    Article  MATH  Google Scholar 

  5. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646. https://doi.org/10.1109/JIOT.2016.2579198

    Article  MATH  Google Scholar 

  6. Dai Y, Xu D, Maharjan S, Zhang Y (2018) Joint computation offloading and user association in multi-task mobile edge computing. IEEE Trans Veh Technol 67(12):12313–12325. https://doi.org/10.1109/TVT.2018.2876804

    Article  MATH  Google Scholar 

  7. Zhang J, Hu X, Ning Z, Ngai ECH, Zhou L, Wei J, Cheng J, Hu B (2018) Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet Things J 5(4):2633–2645. https://doi.org/10.1109/JIOT.2017.2786343

    Article  MATH  Google Scholar 

  8. Xu Z, Ren W, Liang W, Xu W, Xia Q, Zhou P, Li M (2022) Schedule or wait: Age-minimization for iot big data processing in MEC via online learning. In: IEEE INFOCOM 2022 - IEEE conference on Computer Communications, London, United Kingdom, May 2-5, 2022, pp 1809–1818. https://doi.org/10.1109/INFOCOM48880.2022.9796718

  9. Chen M, Liang B, Dong M (2017) Joint offloading and resource allocation for computation and communication in mobile cloud with computing access point. In: 2017 IEEE Conference on Computer Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017, pp 1–9. https://doi.org/10.1109/INFOCOM.2017.8057150

  10. Dinh TQ, Tang J, La QD, Quek TQS (2017) Offloading in mobile edge computing: task allocation and computational frequency scaling. IEEE Trans Commun 65(8):3571–3584. https://doi.org/10.1109/TCOMM.2017.2699660

    Article  MATH  Google Scholar 

  11. Jia M, Cao J, Liang W (2017) Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Trans Cloud Comput 5(4):725–737. https://doi.org/10.1109/TCC.2015.2449834

    Article  MATH  Google Scholar 

  12. Ning Z, Yang Y, Wang X, Guo L, Gao X, Guo S, Wang G (2023) Dynamic computation offloading and server deployment for uav-enabled multi-access edge computing. IEEE Trans Mob Comput 22(5):2628–2644. https://doi.org/10.1109/TMC.2021.3129785

    Article  MATH  Google Scholar 

  13. Zhang X, Zhang J, Peng C, Wang X (2023) Multimodal optimization of edge server placement considering system response time. ACM Trans Sens Netw 19(1):13–11320. https://doi.org/10.1145/3534649

    Article  MATH  Google Scholar 

  14. Dou J, Yuan F, Cao J, Meng X, Ma X, Guo Z (2023) Placement combination between heterogeneous services and heterogeneous capacitated servers in edge computing. J Grid Comput 21(1):16. https://doi.org/10.1007/s10723-023-09644-3

    Article  MATH  Google Scholar 

  15. Kuhn HW (2010) The hungarian method for the assignment problem. In: Jünger M, Liebling TM, Naddef D, Nemhauser GL, Pulleyblank WR, Reinelt G, Rinaldi G, Wolsey LA (eds.) 50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art, pp 29–47. https://doi.org/10.1007/978-3-540-68279-0_2

  16. Information CA, (CAICT), CT (2021) White Paper on China’s Computing Power Development Index. CENTER for SECURITY and EMERGING TECHNOLOGY, Beijing, China

  17. Wang X, Ye J, Lui JCS (2022) Decentralized task offloading in edge computing: A multi-user multi-armed bandit approach. In: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, United Kingdom, May 2-5, 2022, pp 1199–1208. https://doi.org/10.1109/INFOCOM48880.2022.9796961

  18. Zhang W, Wen Y, Guan K, Kilper DC, Luo H, Wu DO (2013) Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans Wirel Commun 12(9):4569–4581. https://doi.org/10.1109/TWC.2013.072513.121842

    Article  Google Scholar 

  19. You C, Huang K, Chae H, Kim B (2017) Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans Wirel Commun 16(3):1397–1411. https://doi.org/10.1109/TWC.2016.2633522

    Article  MATH  Google Scholar 

  20. Khalili A, Zarandi S, Rasti M (2019) Joint resource allocation and offloading decision in mobile edge computing. IEEE Commun Lett 23(4):684–687. https://doi.org/10.1109/LCOMM.2019.2897008

    Article  MATH  Google Scholar 

  21. Wang C, Yu FR, Liang C, Chen Q, Tang L (2017) Joint computation offloading and interference management in wireless cellular networks with mobile edge computing. IEEE Trans Veh Technol 66(8):7432–7445. https://doi.org/10.1109/TVT.2017.2672701

    Article  MATH  Google Scholar 

  22. Nguyen TT, Long BL (2017) Joint computation offloading and resource allocation in cloud based wireless hetnets. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp 1–6. https://doi.org/10.1109/GLOCOM.2017.8254705

  23. Chu W, Yu P, Yu Z, Lui JCS, Lin Y (2022) Online optimal service selection, resource allocation and task offloading for multi-access edge computing: a utility-based approach. IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2022.3152493

    Article  MATH  Google Scholar 

  24. Wu H, Wolter K, Jiao P, Deng Y, Zhao Y, Xu M (2021) EEDTO: an energy-efficient dynamic task offloading algorithm for blockchain-enabled iot-edge-cloud orchestrated computing. IEEE Internet Things J 8(4):2163–2176. https://doi.org/10.1109/JIOT.2020.3033521

    Article  Google Scholar 

  25. Chen J, Wu H, Li R, Jiao P (2022) Green parallel online offloading for dsci-type tasks in iot-edge systems. IEEE Trans Ind Inform 18(11):7955–7966. https://doi.org/10.1109/TII.2022.3167668

    Article  MATH  Google Scholar 

  26. Zhao P, Tian H, Chen K-C, Fan S, Nie G (2020) Context-aware tdd configuration and resource allocation for mobile edge computing. IEEE Trans Commun 68(2):1118–1131. https://doi.org/10.1109/TCOMM.2019.2952580

    Article  MATH  Google Scholar 

  27. Xing H, Liu L, Xu J, Nallanathan A (2019) Joint task assignment and resource allocation for d2d-enabled mobile-edge computing. IEEE Trans Commun 67(6):4193–4207. https://doi.org/10.1109/TCOMM.2019.2903088

    Article  MATH  Google Scholar 

  28. Guo S, Xiao B, Yang Y, Yang Y (2016) Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, April 10-14, 2016, pp 1–9. https://doi.org/10.1109/INFOCOM.2016.7524497

  29. Liang C, He Y, Yu FR, Zhao N (2017) Energy-efficient resource allocation in software-defined mobile networks with mobile edge computing and caching. In: 2017 IEEE Conference on Computer Communications Workshops, INFOCOM Workshops, Atlanta, GA, USA, May 1-4, 2017, pp 121–126. https://doi.org/10.1109/INFCOMW.2017.8116363

  30. Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J Sel Areas Commun 34(12):3590–3605. https://doi.org/10.1109/JSAC.2016.2611964

    Article  MATH  Google Scholar 

  31. Yang B, Fagbohungbe O, Cao X, Yuen C, Qian L, Niyato D, Zhang Y (2022) A joint energy and latency framework for transfer learning over 5g industrial edge networks. IEEE Trans Ind Inform 18(1):531–541. https://doi.org/10.1109/TII.2021.3075444

    Article  Google Scholar 

  32. Liu T, Zhang Y, Zhu Y, Tong W, Yang Y (2021) Online computation offloading and resource scheduling in mobile-edge computing. IEEE Internet Things J 8(8):6649–6664. https://doi.org/10.1109/JIOT.2021.3051427

    Article  MATH  Google Scholar 

  33. Ding Y, Liu C, Zhou X, Liu Z, Tang Z (2020) A code-oriented partitioning computation offloading strategy for multiple users and multiple mobile edge computing servers. IEEE Trans Ind Inform 16(7):4800–4810. https://doi.org/10.1109/TII.2019.2951206

    Article  MATH  Google Scholar 

  34. Yang L, Zhang H, Li X, Ji H, Leung VCM (2018) A distributed computation offloading strategy in small-cell networks integrated with mobile edge computing. IEEE/ACM Trans Netw 26(6):2762–2773. https://doi.org/10.1109/TNET.2018.2876941

    Article  MATH  Google Scholar 

  35. Dinh TQ, Liang B, Quek TQS, Shin H (2020) Online resource procurement and allocation in a hybrid edge-cloud computing system. IEEE Trans Wirel Commun 19(3):2137–2149. https://doi.org/10.1109/TWC.2019.2962795

    Article  MATH  Google Scholar 

  36. Xu J, Chen L, Zhou P (2018) Joint service caching and task offloading for mobile edge computing in dense networks. In: 2018 IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, pp 207–215. https://doi.org/10.1109/INFOCOM.2018.8485977

  37. Qiu X, Liu L, Chen W, Hong Z, Zheng Z (2019) Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Trans Veh Technol 68(8):8050–8062. https://doi.org/10.1109/TVT.2019.2924015

    Article  MATH  Google Scholar 

  38. Ning Z, Dong P, Wang X, Rodrigues JJPC, Xia F (2019) Deep reinforcement learning for vehicular edge computing: an intelligent offloading system. ACM Trans Intell Syst Technol 10(6):60–16024. https://doi.org/10.1145/3317572

    Article  MATH  Google Scholar 

  39. Shen S, Han Y, Wang X, Wang Y (2020) Computation offloading with multiple agents in edge-computing-supported iot. ACM Trans Sens Netw 16(1):8–1827. https://doi.org/10.1145/3372025

    Article  MATH  Google Scholar 

  40. Dong S, Tang J, Abbas K, Hou R, Kamruzzaman J, Rutkowski L, Buyya R (2024) Task offloading strategies for mobile edge computing: a survey. Comput Netw 254:110791. https://doi.org/10.1016/j.comnet.2024.110791

    Article  Google Scholar 

  41. Xiao K, Gao Z, Yao C, Wang Q, Mo Z, Yang Y (2019) Task offloading and resources allocation based on fairness in edge computing. In: 2019 IEEE Wireless Communications and Networking Conference, WCNC 2019, Marrakesh, Morocco, April 15-18, 2019, pp 1–6. https://doi.org/10.1109/WCNC.2019.8885960

  42. Bi S, Zhang YJ (2018) Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans Wirel Commun 17(6):4177–4190. https://doi.org/10.1109/TWC.2018.2821664

    Article  MATH  Google Scholar 

  43. Yang L, Cao J, Liang G, Han X (2016) Cost aware service placement and load dispatching in mobile cloud systems. IEEE Trans Comput 65(5):1440–1452. https://doi.org/10.1109/TC.2015.2435781

    Article  MathSciNet  MATH  Google Scholar 

  44. Poularakis K, Llorca J, Tulino AM, Taylor IJ, Tassiulas L (2019) Joint service placement and request routing in multi-cell mobile edge computing networks. In: 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019, pp 10–18. https://doi.org/10.1109/INFOCOM.2019.8737385

  45. Gao B, Zhou Z, Liu F, Xu F, Li B (2022) An online framework for joint network selection and service placement in mobile edge computing. IEEE Trans Mob Comput 21(11):3836–3851. https://doi.org/10.1109/TMC.2021.3064847

    Article  MATH  Google Scholar 

  46. Kha HH, Tuan HD, Nguyen HH (2012) Fast global optimal power allocation in wireless networks by local D.C. programming. IEEE Trans Wirel Commun 11(2):510–515. https://doi.org/10.1109/TWC.2011.120911.110139

    Article  MATH  Google Scholar 

  47. Li K, Wang X, He Q, Wang J, Li J, Zhan S, Lu G, Dustdar S (2024) Computation offloading in resource-constrained multi-access edge computing. IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2024.3383041

    Article  MATH  Google Scholar 

  48. Liu J, Li C, Luo Y (2024) Efficient resource allocation for iot applications in mobile edge computing via dynamic request scheduling optimization. Expert Syst Appl 255:124716. https://doi.org/10.1016/j.eswa.2024.124716

    Article  MATH  Google Scholar 

  49. Jiang H, Dai X, Xiao Z, Iyengar A (2023) Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans Mob Comput 22(7):4000–4015. https://doi.org/10.1109/TMC.2022.3150432

    Article  MATH  Google Scholar 

  50. Chen Y, Zhao J, Hu J, Wan S, Huang J (2024) Distributed task offloading and resource purchasing in noma-enabled mobile edge computing: hierarchical game theoretical approaches. ACM Trans Embed Comput Syst. https://doi.org/10.1145/3597023

    Article  Google Scholar 

  51. Yin L, Guo S, Jiang Q (2024) Joint task allocation and computation offloading in mobile edge computing with energy harvesting. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2024.3447159

    Article  MATH  Google Scholar 

  52. Nga DTT, Kim M, Kang M (2007) Delay-guaranteed energy saving algorithm for the delay-sensitive applications in IEEE 802.16e systems. IEEE Trans Consumer Electron 53(4):1339–1347. https://doi.org/10.1109/TCE.2007.4429222

    Article  MATH  Google Scholar 

  53. Chimmanee S (2013) PACS metric based on regression for evaluating end-to-end qos capability over the internet for telemedicine. In: The International Conference on Information Networking 2013, ICOIN 2013, Bangkok, Thailand, January 28-30, 2013, pp 359–364. https://doi.org/10.1109/ICOIN.2013.6496404

  54. Wang C, Liang C, Yu FR, Chen Q, Tang L (2017) Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans Wirel Commun 16(8):4924–4938. https://doi.org/10.1109/TWC.2017.2703901

    Article  MATH  Google Scholar 

  55. Zahir T, Arshad K, Nakata A, Moessner K (2013) Interference management in femtocells. IEEE Commun Surv Tutor 15(1):293–311. https://doi.org/10.1109/SURV.2012.020212.00101

    Article  MATH  Google Scholar 

  56. Lu W, Fan Q, Li Z, Lu H (2016) Power control based time-domain inter-cell interference coordination scheme in dscns. In: 2016 IEEE International Conference on Communications, ICC 2016, Kuala Lumpur, Malaysia, May 22-27, 2016, pp 1–6. https://doi.org/10.1109/ICC.2016.7511467

  57. Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans Commun 64(10):4268–4282. https://doi.org/10.1109/TCOMM.2016.2599530

    Article  MATH  Google Scholar 

  58. Zhang W, Wen Y, Cai J, Wu DO (2014) Toward transcoding as a service in a multimedia cloud: energy-efficient job-dispatching algorithm. IEEE Trans Veh Technol 63(5):2002–2012. https://doi.org/10.1109/TVT.2014.2310394

    Article  MATH  Google Scholar 

  59. Muñoz O, Pascual-Iserte A, Vidal J (2015) Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading. IEEE Trans Veh Technol 64(10):4738–4755. https://doi.org/10.1109/TVT.2014.2372852

    Article  MATH  Google Scholar 

  60. Freund RW, Jarre F (2001) Solving the sum-of-ratios problem by an interior-point method. J Glob Optim 19(1):83–102. https://doi.org/10.1023/A:1008316327038

    Article  MathSciNet  MATH  Google Scholar 

  61. Boyd S, Vandenberghe L (2004) Convex optimization. https://doi.org/10.1017/CBO9780511804441

  62. Chong E, Zak SH (1996) An introduction to optimization. Antennas Propag Mag IEEE 38:60. https://doi.org/10.1109/MAP.1996.500234

    Article  MATH  Google Scholar 

  63. Ouyang T, Li R, Chen X, Zhou Z, Tang X (2019) Adaptive user-managed service placement for mobile edge computing: An online learning approach. In: 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019, pp 1468–1476. https://doi.org/10.1109/INFOCOM.2019.8737560

  64. Chen L, Xu J (2019) Task replication for vehicular cloud: contextual combinatorial bandit with delayed feedback. In: 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019, pp 748–756. https://doi.org/10.1109/INFOCOM.2019.8737654

  65. Darak SJ, Hanawal MK (2019) Multi-player multi-armed bandits for stable allocation in heterogeneous ad-hoc networks. IEEE J Sel Areas Commun 37(10):2350–2363. https://doi.org/10.1109/JSAC.2019.2934003

    Article  MATH  Google Scholar 

  66. Bertsekas D, Castanon D (1989) The auction algorithm for the transportation problem. Ann Oper Res 20:67–96. https://doi.org/10.1007/BF02216923

    Article  MathSciNet  MATH  Google Scholar 

  67. Naparstek O, Leshem A (2014) Fully distributed optimal channel assignment for open spectrum access. IEEE Trans Signal Process 62(2):283–294. https://doi.org/10.1109/TSP.2013.2285512

    Article  MathSciNet  MATH  Google Scholar 

  68. Luo Y, Yuan X, Liu Y (2007) An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput Chem Eng 31(3):153–162. https://doi.org/10.1016/j.compchemeng.2006.05.016

    Article  MATH  Google Scholar 

  69. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach Learn 47(2–3):235–256. https://doi.org/10.1023/A:1013689704352

    Article  MATH  Google Scholar 

  70. Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (2002) The nonstochastic multiarmed bandit problem. SIAM J Comput 32(1):48–77. https://doi.org/10.1137/S0097539701398375

    Article  MathSciNet  MATH  Google Scholar 

  71. Lattimore T, Szepesvári C (2020) The Exp3-IX Algorithm, pp 142–152. https://doi.org/10.1017/9781108571401.016

  72. Kwak J, Kim Y, Lee J, Chong S (2015) DREAM: dynamic resource and task allocation for energy minimization in mobile cloud systems. IEEE J Sel Areas Commun 33(12):2510–2523. https://doi.org/10.1109/JSAC.2015.2478718

    Article  MATH  Google Scholar 

  73. Liu J, Ren J, Zhang Y, Peng X, Zhang Y, Yang Y (2023) Efficient dependent task offloading for multiple applications in mec-cloud system. IEEE Trans Mob Comput 22(4):2147–2162. https://doi.org/10.1109/TMC.2021.3119200

    Article  MATH  Google Scholar 

  74. Chen L, Wu J, Zhang J, Dai H-N, Long X, Yao M (2022) Dependency-aware computation offloading for mobile edge computing with edge-cloud cooperation. IEEE Trans Cloud Comput 10(4):2451–2468. https://doi.org/10.1109/TCC.2020.3037306

    Article  MATH  Google Scholar 

  75. Chen Y, Li K, Wu Y, Huang J, Zhao L (2024) Energy efficient task offloading and resource allocation in air-ground integrated mec systems: a distributed online approach. IEEE Trans Mob Comput 23(8):8129–8142. https://doi.org/10.1109/TMC.2023.3346431

    Article  MATH  Google Scholar 

  76. Asheralieva A, Niyato D, Miyanaga Y (2024) Efficient dynamic distributed resource slicing in 6g multi-access edge computing networks with online admm and message passing graph neural networks. IEEE Trans Mob Comput 23(4):2614–2638. https://doi.org/10.1109/TMC.2023.3262514

    Article  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China, under the grant 61972070.

Author information

Authors and Affiliations

Authors

Contributions

First author Qimu Xiao contributed the main idea of the model, experiments, and most writing. The second author Mingyu Xiao refined the model and algorithms and polished the presentation.

Corresponding author

Correspondence to Mingyu Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This issue is not applicable in our paper. Thus, there is no ethical problem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Xiao, M. Joint computation offloading and resource allocation in multi-cell MEC networks. J Supercomput 81, 459 (2025). https://doi.org/10.1007/s11227-025-06921-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-06921-8

Keywords