Abstract
A widely studied typical mobile edge computing (MEC) system consists of a cloud server, several edge servers, and some user equipment. Each MEC system is also referred to as a cell. In a multi-cell network, there are several different cells, and the cloud servers in different cells can be connected. In this paper, we consider the problem of offloading computing tasks crossing cells in a multi-cell network to improve the user’s quality of experience (QoE). We first investigate a cross-cell task binary computation offloading and resource allocation model for optimizing QoE and formulate this optimization problem as a mixed-integer nonlinear programming (MINLP). Then, for the offline case, we design an efficient exact algorithm (DGOSS) that can find the optimal computation offloading and resource allocation. For the online case, we devise an online algorithm (DTE-DOL) with a sub-linear bounded regret under dynamic computing task generation, dynamic server quota, and uncertain server-side information assumptions. The online algorithm adopts the multi-user Multi-Armed Bandit technique and distributed auction technique. Finally, we compare the performance of the proposed algorithms on different instances with previously existing algorithms. Experimental results show that for the offline case, the DGOSS algorithm can improve the QoE by approximately 5% with about 37.75% less running time, while for the online case, the DTE-DOL algorithm can significantly improve the QoE by around 18.75% with almost the same running time.










Similar content being viewed by others
Data availability
The device parameter data in the mobile edge computing network come from the server purchase website (https://ecs-buy.aliyun.com). The parameter data of the computation offloading task are set randomly. Please refer to the website (https://github.com/xiaoqimu/Multi-cell-MEC-networks) for details.
References
Huang J, Duan Q, Xing C, Wang H (2017) Topology control for building a large-scale and energy-efficient internet of things. IEEE Wirel Commun 24(1):67–73. https://doi.org/10.1109/MWC.2017.1600193WC
Huang J, Xing C, Wang C (2017) Simultaneous wireless information and power transfer: technologies, applications, and research challenges. IEEE Commun Mag 55(11):26–32. https://doi.org/10.1109/MCOM.2017.1600806
Ning Z, Hu X, Chen Z, Zhou M, Hu B, Cheng J, Obaidat MS (2018) A cooperative quality-aware service access system for social internet of vehicles. IEEE Internet Things J 5(4):2506–2517. https://doi.org/10.1109/JIOT.2017.2764259
Hayes B (2008) Cloud computing. Commun ACM 51(7):9–11. https://doi.org/10.1145/1364782.1364786
Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646. https://doi.org/10.1109/JIOT.2016.2579198
Dai Y, Xu D, Maharjan S, Zhang Y (2018) Joint computation offloading and user association in multi-task mobile edge computing. IEEE Trans Veh Technol 67(12):12313–12325. https://doi.org/10.1109/TVT.2018.2876804
Zhang J, Hu X, Ning Z, Ngai ECH, Zhou L, Wei J, Cheng J, Hu B (2018) Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet Things J 5(4):2633–2645. https://doi.org/10.1109/JIOT.2017.2786343
Xu Z, Ren W, Liang W, Xu W, Xia Q, Zhou P, Li M (2022) Schedule or wait: Age-minimization for iot big data processing in MEC via online learning. In: IEEE INFOCOM 2022 - IEEE conference on Computer Communications, London, United Kingdom, May 2-5, 2022, pp 1809–1818. https://doi.org/10.1109/INFOCOM48880.2022.9796718
Chen M, Liang B, Dong M (2017) Joint offloading and resource allocation for computation and communication in mobile cloud with computing access point. In: 2017 IEEE Conference on Computer Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017, pp 1–9. https://doi.org/10.1109/INFOCOM.2017.8057150
Dinh TQ, Tang J, La QD, Quek TQS (2017) Offloading in mobile edge computing: task allocation and computational frequency scaling. IEEE Trans Commun 65(8):3571–3584. https://doi.org/10.1109/TCOMM.2017.2699660
Jia M, Cao J, Liang W (2017) Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Trans Cloud Comput 5(4):725–737. https://doi.org/10.1109/TCC.2015.2449834
Ning Z, Yang Y, Wang X, Guo L, Gao X, Guo S, Wang G (2023) Dynamic computation offloading and server deployment for uav-enabled multi-access edge computing. IEEE Trans Mob Comput 22(5):2628–2644. https://doi.org/10.1109/TMC.2021.3129785
Zhang X, Zhang J, Peng C, Wang X (2023) Multimodal optimization of edge server placement considering system response time. ACM Trans Sens Netw 19(1):13–11320. https://doi.org/10.1145/3534649
Dou J, Yuan F, Cao J, Meng X, Ma X, Guo Z (2023) Placement combination between heterogeneous services and heterogeneous capacitated servers in edge computing. J Grid Comput 21(1):16. https://doi.org/10.1007/s10723-023-09644-3
Kuhn HW (2010) The hungarian method for the assignment problem. In: Jünger M, Liebling TM, Naddef D, Nemhauser GL, Pulleyblank WR, Reinelt G, Rinaldi G, Wolsey LA (eds.) 50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art, pp 29–47. https://doi.org/10.1007/978-3-540-68279-0_2
Information CA, (CAICT), CT (2021) White Paper on China’s Computing Power Development Index. CENTER for SECURITY and EMERGING TECHNOLOGY, Beijing, China
Wang X, Ye J, Lui JCS (2022) Decentralized task offloading in edge computing: A multi-user multi-armed bandit approach. In: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, United Kingdom, May 2-5, 2022, pp 1199–1208. https://doi.org/10.1109/INFOCOM48880.2022.9796961
Zhang W, Wen Y, Guan K, Kilper DC, Luo H, Wu DO (2013) Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans Wirel Commun 12(9):4569–4581. https://doi.org/10.1109/TWC.2013.072513.121842
You C, Huang K, Chae H, Kim B (2017) Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans Wirel Commun 16(3):1397–1411. https://doi.org/10.1109/TWC.2016.2633522
Khalili A, Zarandi S, Rasti M (2019) Joint resource allocation and offloading decision in mobile edge computing. IEEE Commun Lett 23(4):684–687. https://doi.org/10.1109/LCOMM.2019.2897008
Wang C, Yu FR, Liang C, Chen Q, Tang L (2017) Joint computation offloading and interference management in wireless cellular networks with mobile edge computing. IEEE Trans Veh Technol 66(8):7432–7445. https://doi.org/10.1109/TVT.2017.2672701
Nguyen TT, Long BL (2017) Joint computation offloading and resource allocation in cloud based wireless hetnets. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp 1–6. https://doi.org/10.1109/GLOCOM.2017.8254705
Chu W, Yu P, Yu Z, Lui JCS, Lin Y (2022) Online optimal service selection, resource allocation and task offloading for multi-access edge computing: a utility-based approach. IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2022.3152493
Wu H, Wolter K, Jiao P, Deng Y, Zhao Y, Xu M (2021) EEDTO: an energy-efficient dynamic task offloading algorithm for blockchain-enabled iot-edge-cloud orchestrated computing. IEEE Internet Things J 8(4):2163–2176. https://doi.org/10.1109/JIOT.2020.3033521
Chen J, Wu H, Li R, Jiao P (2022) Green parallel online offloading for dsci-type tasks in iot-edge systems. IEEE Trans Ind Inform 18(11):7955–7966. https://doi.org/10.1109/TII.2022.3167668
Zhao P, Tian H, Chen K-C, Fan S, Nie G (2020) Context-aware tdd configuration and resource allocation for mobile edge computing. IEEE Trans Commun 68(2):1118–1131. https://doi.org/10.1109/TCOMM.2019.2952580
Xing H, Liu L, Xu J, Nallanathan A (2019) Joint task assignment and resource allocation for d2d-enabled mobile-edge computing. IEEE Trans Commun 67(6):4193–4207. https://doi.org/10.1109/TCOMM.2019.2903088
Guo S, Xiao B, Yang Y, Yang Y (2016) Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, April 10-14, 2016, pp 1–9. https://doi.org/10.1109/INFOCOM.2016.7524497
Liang C, He Y, Yu FR, Zhao N (2017) Energy-efficient resource allocation in software-defined mobile networks with mobile edge computing and caching. In: 2017 IEEE Conference on Computer Communications Workshops, INFOCOM Workshops, Atlanta, GA, USA, May 1-4, 2017, pp 121–126. https://doi.org/10.1109/INFCOMW.2017.8116363
Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J Sel Areas Commun 34(12):3590–3605. https://doi.org/10.1109/JSAC.2016.2611964
Yang B, Fagbohungbe O, Cao X, Yuen C, Qian L, Niyato D, Zhang Y (2022) A joint energy and latency framework for transfer learning over 5g industrial edge networks. IEEE Trans Ind Inform 18(1):531–541. https://doi.org/10.1109/TII.2021.3075444
Liu T, Zhang Y, Zhu Y, Tong W, Yang Y (2021) Online computation offloading and resource scheduling in mobile-edge computing. IEEE Internet Things J 8(8):6649–6664. https://doi.org/10.1109/JIOT.2021.3051427
Ding Y, Liu C, Zhou X, Liu Z, Tang Z (2020) A code-oriented partitioning computation offloading strategy for multiple users and multiple mobile edge computing servers. IEEE Trans Ind Inform 16(7):4800–4810. https://doi.org/10.1109/TII.2019.2951206
Yang L, Zhang H, Li X, Ji H, Leung VCM (2018) A distributed computation offloading strategy in small-cell networks integrated with mobile edge computing. IEEE/ACM Trans Netw 26(6):2762–2773. https://doi.org/10.1109/TNET.2018.2876941
Dinh TQ, Liang B, Quek TQS, Shin H (2020) Online resource procurement and allocation in a hybrid edge-cloud computing system. IEEE Trans Wirel Commun 19(3):2137–2149. https://doi.org/10.1109/TWC.2019.2962795
Xu J, Chen L, Zhou P (2018) Joint service caching and task offloading for mobile edge computing in dense networks. In: 2018 IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, pp 207–215. https://doi.org/10.1109/INFOCOM.2018.8485977
Qiu X, Liu L, Chen W, Hong Z, Zheng Z (2019) Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Trans Veh Technol 68(8):8050–8062. https://doi.org/10.1109/TVT.2019.2924015
Ning Z, Dong P, Wang X, Rodrigues JJPC, Xia F (2019) Deep reinforcement learning for vehicular edge computing: an intelligent offloading system. ACM Trans Intell Syst Technol 10(6):60–16024. https://doi.org/10.1145/3317572
Shen S, Han Y, Wang X, Wang Y (2020) Computation offloading with multiple agents in edge-computing-supported iot. ACM Trans Sens Netw 16(1):8–1827. https://doi.org/10.1145/3372025
Dong S, Tang J, Abbas K, Hou R, Kamruzzaman J, Rutkowski L, Buyya R (2024) Task offloading strategies for mobile edge computing: a survey. Comput Netw 254:110791. https://doi.org/10.1016/j.comnet.2024.110791
Xiao K, Gao Z, Yao C, Wang Q, Mo Z, Yang Y (2019) Task offloading and resources allocation based on fairness in edge computing. In: 2019 IEEE Wireless Communications and Networking Conference, WCNC 2019, Marrakesh, Morocco, April 15-18, 2019, pp 1–6. https://doi.org/10.1109/WCNC.2019.8885960
Bi S, Zhang YJ (2018) Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans Wirel Commun 17(6):4177–4190. https://doi.org/10.1109/TWC.2018.2821664
Yang L, Cao J, Liang G, Han X (2016) Cost aware service placement and load dispatching in mobile cloud systems. IEEE Trans Comput 65(5):1440–1452. https://doi.org/10.1109/TC.2015.2435781
Poularakis K, Llorca J, Tulino AM, Taylor IJ, Tassiulas L (2019) Joint service placement and request routing in multi-cell mobile edge computing networks. In: 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019, pp 10–18. https://doi.org/10.1109/INFOCOM.2019.8737385
Gao B, Zhou Z, Liu F, Xu F, Li B (2022) An online framework for joint network selection and service placement in mobile edge computing. IEEE Trans Mob Comput 21(11):3836–3851. https://doi.org/10.1109/TMC.2021.3064847
Kha HH, Tuan HD, Nguyen HH (2012) Fast global optimal power allocation in wireless networks by local D.C. programming. IEEE Trans Wirel Commun 11(2):510–515. https://doi.org/10.1109/TWC.2011.120911.110139
Li K, Wang X, He Q, Wang J, Li J, Zhan S, Lu G, Dustdar S (2024) Computation offloading in resource-constrained multi-access edge computing. IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2024.3383041
Liu J, Li C, Luo Y (2024) Efficient resource allocation for iot applications in mobile edge computing via dynamic request scheduling optimization. Expert Syst Appl 255:124716. https://doi.org/10.1016/j.eswa.2024.124716
Jiang H, Dai X, Xiao Z, Iyengar A (2023) Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans Mob Comput 22(7):4000–4015. https://doi.org/10.1109/TMC.2022.3150432
Chen Y, Zhao J, Hu J, Wan S, Huang J (2024) Distributed task offloading and resource purchasing in noma-enabled mobile edge computing: hierarchical game theoretical approaches. ACM Trans Embed Comput Syst. https://doi.org/10.1145/3597023
Yin L, Guo S, Jiang Q (2024) Joint task allocation and computation offloading in mobile edge computing with energy harvesting. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2024.3447159
Nga DTT, Kim M, Kang M (2007) Delay-guaranteed energy saving algorithm for the delay-sensitive applications in IEEE 802.16e systems. IEEE Trans Consumer Electron 53(4):1339–1347. https://doi.org/10.1109/TCE.2007.4429222
Chimmanee S (2013) PACS metric based on regression for evaluating end-to-end qos capability over the internet for telemedicine. In: The International Conference on Information Networking 2013, ICOIN 2013, Bangkok, Thailand, January 28-30, 2013, pp 359–364. https://doi.org/10.1109/ICOIN.2013.6496404
Wang C, Liang C, Yu FR, Chen Q, Tang L (2017) Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans Wirel Commun 16(8):4924–4938. https://doi.org/10.1109/TWC.2017.2703901
Zahir T, Arshad K, Nakata A, Moessner K (2013) Interference management in femtocells. IEEE Commun Surv Tutor 15(1):293–311. https://doi.org/10.1109/SURV.2012.020212.00101
Lu W, Fan Q, Li Z, Lu H (2016) Power control based time-domain inter-cell interference coordination scheme in dscns. In: 2016 IEEE International Conference on Communications, ICC 2016, Kuala Lumpur, Malaysia, May 22-27, 2016, pp 1–6. https://doi.org/10.1109/ICC.2016.7511467
Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans Commun 64(10):4268–4282. https://doi.org/10.1109/TCOMM.2016.2599530
Zhang W, Wen Y, Cai J, Wu DO (2014) Toward transcoding as a service in a multimedia cloud: energy-efficient job-dispatching algorithm. IEEE Trans Veh Technol 63(5):2002–2012. https://doi.org/10.1109/TVT.2014.2310394
Muñoz O, Pascual-Iserte A, Vidal J (2015) Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading. IEEE Trans Veh Technol 64(10):4738–4755. https://doi.org/10.1109/TVT.2014.2372852
Freund RW, Jarre F (2001) Solving the sum-of-ratios problem by an interior-point method. J Glob Optim 19(1):83–102. https://doi.org/10.1023/A:1008316327038
Boyd S, Vandenberghe L (2004) Convex optimization. https://doi.org/10.1017/CBO9780511804441
Chong E, Zak SH (1996) An introduction to optimization. Antennas Propag Mag IEEE 38:60. https://doi.org/10.1109/MAP.1996.500234
Ouyang T, Li R, Chen X, Zhou Z, Tang X (2019) Adaptive user-managed service placement for mobile edge computing: An online learning approach. In: 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019, pp 1468–1476. https://doi.org/10.1109/INFOCOM.2019.8737560
Chen L, Xu J (2019) Task replication for vehicular cloud: contextual combinatorial bandit with delayed feedback. In: 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019, pp 748–756. https://doi.org/10.1109/INFOCOM.2019.8737654
Darak SJ, Hanawal MK (2019) Multi-player multi-armed bandits for stable allocation in heterogeneous ad-hoc networks. IEEE J Sel Areas Commun 37(10):2350–2363. https://doi.org/10.1109/JSAC.2019.2934003
Bertsekas D, Castanon D (1989) The auction algorithm for the transportation problem. Ann Oper Res 20:67–96. https://doi.org/10.1007/BF02216923
Naparstek O, Leshem A (2014) Fully distributed optimal channel assignment for open spectrum access. IEEE Trans Signal Process 62(2):283–294. https://doi.org/10.1109/TSP.2013.2285512
Luo Y, Yuan X, Liu Y (2007) An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput Chem Eng 31(3):153–162. https://doi.org/10.1016/j.compchemeng.2006.05.016
Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach Learn 47(2–3):235–256. https://doi.org/10.1023/A:1013689704352
Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (2002) The nonstochastic multiarmed bandit problem. SIAM J Comput 32(1):48–77. https://doi.org/10.1137/S0097539701398375
Lattimore T, Szepesvári C (2020) The Exp3-IX Algorithm, pp 142–152. https://doi.org/10.1017/9781108571401.016
Kwak J, Kim Y, Lee J, Chong S (2015) DREAM: dynamic resource and task allocation for energy minimization in mobile cloud systems. IEEE J Sel Areas Commun 33(12):2510–2523. https://doi.org/10.1109/JSAC.2015.2478718
Liu J, Ren J, Zhang Y, Peng X, Zhang Y, Yang Y (2023) Efficient dependent task offloading for multiple applications in mec-cloud system. IEEE Trans Mob Comput 22(4):2147–2162. https://doi.org/10.1109/TMC.2021.3119200
Chen L, Wu J, Zhang J, Dai H-N, Long X, Yao M (2022) Dependency-aware computation offloading for mobile edge computing with edge-cloud cooperation. IEEE Trans Cloud Comput 10(4):2451–2468. https://doi.org/10.1109/TCC.2020.3037306
Chen Y, Li K, Wu Y, Huang J, Zhao L (2024) Energy efficient task offloading and resource allocation in air-ground integrated mec systems: a distributed online approach. IEEE Trans Mob Comput 23(8):8129–8142. https://doi.org/10.1109/TMC.2023.3346431
Asheralieva A, Niyato D, Miyanaga Y (2024) Efficient dynamic distributed resource slicing in 6g multi-access edge computing networks with online admm and message passing graph neural networks. IEEE Trans Mob Comput 23(4):2614–2638. https://doi.org/10.1109/TMC.2023.3262514
Funding
The work is supported by the National Natural Science Foundation of China, under the grant 61972070.
Author information
Authors and Affiliations
Contributions
First author Qimu Xiao contributed the main idea of the model, experiments, and most writing. The second author Mingyu Xiao refined the model and algorithms and polished the presentation.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Ethical approval
This issue is not applicable in our paper. Thus, there is no ethical problem.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xiao, Q., Xiao, M. Joint computation offloading and resource allocation in multi-cell MEC networks. J Supercomput 81, 459 (2025). https://doi.org/10.1007/s11227-025-06921-8
Accepted:
Published:
DOI: https://doi.org/10.1007/s11227-025-06921-8