Skip to main content

Advertisement

Log in

AlzONet: a deep learning optimized framework for multiclass Alzheimer’s disease diagnosis using MRI brain imaging

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), characterized by progressive neurological degeneration and cognitive decline, necessitates early detection for effective intervention before symptom onset. Deep learning (DL) methodologies have emerged as promising tools for predicting and classifying AD. In this context, Convolutional Neural Networks (CNNs) exhibit proficiency in discerning specific AD features, enabling accurate diagnosis. To this end, this study proposes an effective deep learning optimized CNN model, namely, AlzONet, tailored to address the intricate challenges of Alzheimer’s patient brain classification. To explore the generalization of the AlzONet model through three gradient optimization algorithms: Adam, SGD, and RMSProp, this study focuses on how each algorithm impacts the model’s ability to minimize the loss function during training and how well it generalizes to new, unseen data. The Kaggle AD dataset, which includes normal, mild, very mild, and moderate stages, assesses the model’s performance. K fold cross-validation is applied to evaluate the model’s efficacy and generalization capability reliably. In contrast, a transfer learning-based comparison was conducted with five pre-trained models (VGG-16, DenseNet-121, ResNet-50, Inception-V3, and Xception). The results reveal that AlzONet trained with Adam achieves exceptional accuracy of 98.1% with a learning rate of 0.0001, while SGD and RMSProp yield 97.3% and 96.6% with a learning rate of 0.001 during training. In the testing phase, the optimized AlzONet model with Adam surpasses expectations with 96.5% accuracy, 96.7% F1-score, and 99.7% AUC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statements

The authors declare that they have accessed Data Availability. (n.d.). 2022. Retrieved April 1, 2024, from https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset

Abbreviations

AD:

Alzheimer’s disease

Adam:

Adaptive moment estimation

AdaGrad:

Adaptive gradient algorithm

AUC:

Area under the curve

AWS:

Amazon web services

CAD:

Computer-aided diagnosis

Caps Net:

Capsule networks

CNN:

Convolutional neural network

DenseNet121:

Densely connected convolutional network 121-layer network

DL:

Deep learning

ET:

Extremely randomized tree

FDA:

Food and drug administration

FN:

False negative

FP:

False positive

FPR:

False-positive rate

Gaussian NB:

Gaussian Naive Bayes

GRNN:

General regression neural network

LR:

Logistic regression

LR-SGD:

Logistic regression with stochastic gradient descent

LSTM:

Long short-term memory

MCI:

Mild cognitive impairment

ML:

Machine learning

MRI:

Magnetic resonance imaging

MPNN:

Multilayer perceptron neural network

NMDA:

N-Methyl-D-Aspartate

RBNN:

Radial basis neural network

PET:

Positron emission tomography

PRC:

Precision-recall curve

ResNet-50:

Residual network 50-layer network

RESTful API:

Representational state transfer application programming interface

RMSProp:

Root mean square propagation

SGD:

Stochastic gradient descent

SMOTE:

Synthetic minority over-sampling technique

SVM:

Support vector machine

TN:

True negative

TP:

True positive

TPR:

True-positive rate

XAL:

Explainable artificial intelligence

References

  1. De Marco M, Brandi AL, Bieger A, Krug B, Camozzato A, Picon PD, Chaves MLF, Castilhos RM (2023) Disparity in the use of Alzheimer’s disease treatment in Southern Brazil. Sci Rep 13(1):9555

    Article  Google Scholar 

  2. Lopez-Lee C, Torres ERS, Carling G (2024) Gan L (2024) Mechanisms of sex differences in Alzheimer’s disease. Neuron 112(8):1208–1221. https://doi.org/10.1016/j.neuron.2024.01.024

    Article  MATH  Google Scholar 

  3. ZhouQ., Wang J, Yu X, Wang S, Zhang Y, (2023) A survey of deep learning for Alzheimer’s disease. Mach Learn Knowl Extract 5(2):611–668

    Article  MATH  Google Scholar 

  4. Zhang L, Yao Q, Hu J, Qiu B, Xiao Y, Zhang Q, Zeng Y, Zheng S, Zhang Y, Wan Y (2024) Hotspots and trends of microglia in Alzheimer’s disease: a bibliometric analysis during 2000–2022. Eur J Med Res 29(1):75

    Article  MATH  Google Scholar 

  5. Mishra A, Arora P, Jaiswal A, Mazumdar B (2024) Deep learning and extreme learning machine for the diagnosis of Alzheimer’s disease. Authorea Preprints. https://doi.org/10.22541/au.170664821.18176002/v1

    Article  MATH  Google Scholar 

  6. Hong J, Zhang YD, Chen W (2022) Source-free unsupervised domain adaptation for cross-modality abdominal multi-organ segmentation. Knowl-Based Syst 250:109155

    Article  Google Scholar 

  7. Hong J, Yu SC, Chen W (2022) Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning. Appl Soft Comput 121:108729

    Article  Google Scholar 

  8. Zhang Y, Hong J, Chen S (2023) Medical big data and artificial intelligence for healthcare. Appl Sci 13(6):3745

    Article  MATH  Google Scholar 

  9. Li S, Zhao S, Zhang Y, Hong J, Chen W (2024) Source-free unsupervised adaptive segmentation for knee joint MRI. Biomed Signal Process Control 92:106028

    Article  MATH  Google Scholar 

  10. Alsubaie MG, Luo S, Shaukat K (2024) Alzheimer’s disease detection using deep learning on neuroimaging: a systematic review. Mach Learn Knowl Extract 6(1):464–505. https://doi.org/10.3390/make6010024

    Article  MATH  Google Scholar 

  11. DiBenedetti DB, Menne H, Paulsen R et al (2023) Technical review of clinical outcomes assessments across the continuum of Alzheimer’s disease. Neurol Ther 12(2):571–595. https://doi.org/10.1007/s40120-023-00443-2

    Article  MATH  Google Scholar 

  12. Saleem TJ, Zahra SR, Wu F, Alwakeel A, Alwakeel M, Jeribi F, Hijji M (2022) Deep learning-based diagnosis of Alzheimer’s disease. J Personal Med 12(5):815. https://doi.org/10.3390/jpm12050815

    Article  Google Scholar 

  13. Diogo VS, Ferreira HA, Prata D et al (2022) Early diagnosis of Alzheimer’s disease using machine learning: a multi-diagnostic, generalizable approach. Alz Res Therapy 14:107. https://doi.org/10.1186/s13195-022-01047-y

    Article  MATH  Google Scholar 

  14. Uddin KMM, AlamM J, Jannat-E-Anawar, et al (2023) A novel approach utilizing machine learning for the early diagnosis of Alzheimer’s disease. Biomed Mater Dev 1:882–898. https://doi.org/10.1007/s44174-023-00078-9

    Article  Google Scholar 

  15. Sharma A, Kaur S, Memon N, Fathima AJ, Ray S, Bhatt MW (2021) Alzheimer’s patients detection using support vector machine (SVM) with quantitative analysis. Neurosci Inform 1(3):100012

    Article  Google Scholar 

  16. Dara OA, Lopez-Guede JM, Raheem HI, Rahebi J, Zulueta E, Fernandez-Gamiz U (2023) Alzheimer’s disease diagnosis using machine learning: a survey. Appl Sci 13(14):8298. https://doi.org/10.3390/app13148298

    Article  MATH  Google Scholar 

  17. Sachidananda Murthy KB, Prasad SN (2023) Blockchain-enabled detection of neurological disorders using a deep learning approach. Eng Proc 59(1):187. https://doi.org/10.3390/engproc202305918

    Article  MATH  Google Scholar 

  18. Viswan V, Shaffi N, Mahmud M et al (2024) Explainable artificial intelligence in Alzheimer’s disease classification: a systematic review. Cogn Comput 16:1–44. https://doi.org/10.1007/s12559-023-10192-x

    Article  Google Scholar 

  19. Xu F, Gao W, Zhang M, Zhang F, Sun X, Wu B, Liu Y, Li X, Li H (2024) Diagnostic implications of ubiquitination-related gene signatures in Alzheimer’s disease. Sci Rep 14(1):10728

    Article  MATH  Google Scholar 

  20. Ávila-Jiménez JL, Cantón-Habas V, del Pilar C-G, Rich-Ruiz M, VenturaS, (2024) A deep learning model for Alzheimer’s disease diagnosis based on patient clinical records. Comput Biol Med 169:107814

    Article  Google Scholar 

  21. Warren SL, Moustafa AA (2023) Functional magnetic resonance imaging, deep learning, and Alzheimer’s disease: a systematic review. J Neuroimaging 33(1):5–18

    Article  MATH  Google Scholar 

  22. Alahmed H, Al-Suhail GA (2025). Alzheimer's disease diagnosis using deep learning for brain MRI images: a comparative analysis. Iraqi J Electr Electron Eng, in press.

  23. Sharma G, Vijayvargiya A, Kumar R (2021) Comparative assessment among different convolutional neural network architectures for Alzheimer's disease detection. In: 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 2021, pp 1–6, https://doi.org/10.1109/UPCON52273.2021.9667607.

  24. Mora-Rubio A, Bravo-Ortíz MA, Quiñones Arredondo S, Saborit Torres JM, Ruz GA, Tabares-Soto R (2023) Classification of Alzheimer’s disease stages from magnetic resonance images using deep learning. PeerJ Comput Sci 9:e1490. https://doi.org/10.7717/peerj-cs.1490

    Article  Google Scholar 

  25. Şener B, Acici K, Sümer E (2024) Categorization of Alzheimer’s disease stages using deep learning approaches with McNemar’s test. PeerJ Comput Sci 10:e1877. https://doi.org/10.7717/peerj-cs.1877

    Article  Google Scholar 

  26. Balaji P, Chaurasia MA, Bilfaqih SM, Muniasamy A, Alsid LEG (2023) Hybridized deep learning approach for detecting Alzheimer’s disease. Biomedicines 11(1):149

    Article  Google Scholar 

  27. Oyewola DO, Alechenu B, Al-Mustapha KA, Oyewande OV (2020) Classification of dementia diseases using deep learning techniques. FUDMA J Sci 4(2), 371–379. https://doi.org/10.33003/fjs-2020-0402-197

  28. Mathews E, Jabez J (2024) Classifying Alzheimer’s disease from sMRI data using a hybrid deep learning approaches. Salud, Ciencia y Tecnología-Serie de Conferencias 3:651

    Article  MATH  Google Scholar 

  29. Yuan Z, Li X, Hao Z, Tang Z, Yao X, Wu T (2024) Intelligent prediction of Alzheimer’s disease via improved multifeature squeeze-and-excitation-dilated residual network. Sci Rep 14(1):11994

    Article  MATH  Google Scholar 

  30. Raza N, Naseer A, Tamoor M, Zafar K (2023) Alzheimer disease classification through transfer learning approach. Diagnostics 13(4):801. https://doi.org/10.3390/diagnostics13040801

    Article  Google Scholar 

  31. Ghaffari H, Tavakoli H, Pirzad Jahromi G (2022) Deep transfer learning-based fully automated detection and classification of Alzheimer’s disease on brain MRI. Br J Radiol 95(1136):20211253. https://doi.org/10.1259/bjr.20211253

    Article  Google Scholar 

  32. Maqsood M, Nazir F, Khan U, Aadil F, Jamal H, Mehmood I, Song OY (2019) Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors 19(11):2645. https://doi.org/10.3390/s19112645

    Article  MATH  Google Scholar 

  33. Sarawgi U, Zulfikar W, Soliman N, Maes P (2020) Multimodal inductive transfer learning for detection of Alzheimer's dementia and its severity. arXiv 2009.00700.https://arxiv.org/abs/2009.00700

  34. Hon M, Khan NM (2017) Towards Alzheimer's disease classification through transfer learning. In: 2017 IEEE International Conference Bioinformatics and Biomedicine (BIBM) 1166–1169.https://doi.org/10.1109/BIBM.2017.8217822

  35. Aderghal K, Khvostikov A, Krylov A, Benois-Pineau J, Afdel K, Catheline G (2018) Classification of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning. 2018 IEEE international symposium computer-based medical systems (CBMS) 345–350.https://doi.org/10.1109/CBMS.2018.00067

  36. Rallabandi VS, Tulpule K, Gattu M, Initiative ADN (2020) Automatic classification of cognitively normal, mild cognitive impairment, and Alzheimer’s disease using structural MRI analysis. Inform Med Unlocked 18:100305. https://doi.org/10.1016/j.imu.2020.100305

    Article  Google Scholar 

  37. Rallabandi VS, Seetharaman K, Alzheimer's Disease Neuroimaging Initiative (2023) Classification of cognitively normal controls, mild cognitive impairment, and Alzheimer's disease using transfer learning approach. Biomed Signal Process Control 79:104092.https://doi.org/10.1016/j.bspc.2022.104092

  38. Armonaite K, La Ventura M, Laura L (2023) Alzheimer’s disease detection from magnetic resonance imaging: a deep learning perspective. Explor Neuroprotect Therapy 3(3):139–150

    Article  MATH  Google Scholar 

  39. Bamber SS, Vishvakarma T (2023) Medical image classification for Alzheimer’s using a deep learning approach. J Eng Appl Sci 70(1):54

    Article  MATH  Google Scholar 

  40. Park SW, Yeo NY, Kim Y, Byeon G, Jang JW (2023) Deep learning application for the classification of Alzheimer’s disease using 18F-flortaucipir (AV-1451) tau positron emission tomography. Sci Rep 13(1):8096

    Article  Google Scholar 

  41. Agarwal D, Berbís MÁ, Luna A, Lipari V, Ballester JB, de la Torre-Díez I (2023) Automated medical diagnosis of Alzheimer’ s disease using an efficient net convolutional neural network. J Med Syst 47(1):57

    Article  Google Scholar 

  42. AparnaM., & Rao, B. S. (2023) A novel automated deep learning approach for alzheimer’s disease classification. IAES Int J Artif Intell 12(1):451

    MATH  Google Scholar 

  43. Al Shehri W (2022) Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Comput Sci 8:e1177

    Article  MATH  Google Scholar 

  44. Helaly HA, Badawy M, Haikal AY (2022) Deep learning approach for early detection of Alzheimer’s disease. Cogn Comput 14(5):1711–1727

    Article  MATH  Google Scholar 

  45. Alqahtani N, Alam S, Aqeel I, ShuaibM MK, I, Khan SB, & Malibari AA, (2023) Deep belief networks (DBN) with IoT-based alzheimer’s disease detection and classification. Appl Sci 13(13):7833

    Article  Google Scholar 

  46. Tambe P, Saigaonkar R, Devadiga N, Chitte PH (2021) Deep Learning techniques for effective diagnosis of Alzheimer’s disease using MRI images. ITM Web of Conf 40:3021

    Article  Google Scholar 

  47. Mohi ud din dar G, Bhagat A, Ansarullah SI, Othman MTB, Hamid Y, Alkahtani HK, Ullah I, Hamam H, (2023) A novel framework for classification of different Alzheimer’s disease stages using CNN model. Electronics 12(2):469

    Article  Google Scholar 

  48. Talukder MA, Islam MM, Uddin MA et al (2023) An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning. Expert Syst Appl 230:120534

    Article  MATH  Google Scholar 

  49. Shaffi N, Subramanian K, Vimbi V, Hajamohideen F, Abdesselam A, Mahmud M (2024) Performance evaluation of deep, shallow and ensemble machine learning methods for the automated classification of Alzheimer's disease. Int J Neural Syst, https://doi.org/10.1142/s0129065724500291.

  50. Rani P, Lamba R, Sachdeva RK, Kumar K, Iwendi C (2024) A machine learning model for Alzheimer's disease prediction. IET Cyber‐Physical Systems: Theory & Applications.

  51. George CM, Menon S (2024) Machine learning for Alzheimer Derection: a comprehensive approach. J Theoret Appl Inf Technol 102(4).

  52. Zhang X, Gao L, Wang Z, YuY Zhang Y, Hong J (2024) Improved neural network with multi-task learning for Alzheimer’s disease classification. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e26405

    Article  MATH  Google Scholar 

  53. Rahat IS, Hossain T, Ghosh H, Reddy KLK, Palvadi SK, Ravindra JVR (2024) Exploring deep learning models for accurate Alzheimer’s disease classification based on MRI imaging. EAI Endorsed Trans Pervasive Health Technol. https://doi.org/10.4108/eetpht.10.5550

    Article  Google Scholar 

  54. Fathi S, Ahmadi A, Dehnad A, Almasi-Dooghaee M, Sadegh M (2024) Initiative ADN (2024) A deep learning-based ensemble method for early diagnosis of Alzheimer’s disease using MRI images. Neuroinform 22:89–105. https://doi.org/10.1007/s12021-023-09646-2

    Article  Google Scholar 

  55. Katabathula S, Wang Q, Xu R (2021) Predict Alzheimer’s disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations. Alz Res Therapy 13:104. https://doi.org/10.1186/s13195-021-00837-0

    Article  Google Scholar 

  56. Data Availability (2022) Retrieved April 1, 2024, from https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset

  57. Özkaraca O, Bağrıaçık Oİ, Gürüler H, Khan F, Hussain J, Khan J, Ue L (2023) Multiple brain tumor classification with dense CNN architecture using brain MRI images. Life 13(2):349. https://doi.org/10.3390/life13020349

    Article  Google Scholar 

  58. Gorriz, JM, Segovia F, Ramirez J, Ortiz A, Suckling J (2024) Is K-fold cross validation the best model selection method for Machine Learning? ArXiv Preprint https://doi.org/10.48550/arXiv.2401.16407.

  59. Kosolwattana T, Liu C, Hu R, Han S, Chen H, Lin Y (2023) A self- inspected adaptive SMOTE algorithm (SASMOTE) for highly imbalanced data classification in healthcare. BioData Mining 16(1):15

    Article  Google Scholar 

  60. Zhao Y, Wong ZSY, Tsui KL (2018) A framework of rebalancing imbalanced healthcare data for rare events' classification: a case of look-alike sound-alike mix-up incident detection. J Healthcare Eng, 2018.

  61. Murugan S, Venkatesan C, Sumithra MG, Gao XZ, Elakkiya B, Akila M, Manoharan S (2021) DEMNET: a deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. IEEE Access 9:90319–90329. https://doi.org/10.1109/ACCESS.2021.3090474

    Article  Google Scholar 

  62. Desai C (2024) Impact of weight initialization techniques on neural network efficiency and performance: a case study with MNIST dataset. Int J Eng Comput Sci 13(04).

  63. AbdulAzeem Y, Bahgat WM, Badawy M (2021) A CNN based framework for classification of Alzheimer’s disease. Neural Comput Appl 33:10415–10428

    Article  MATH  Google Scholar 

  64. Thakur S, Kumar A (2021) X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN). Biomed Signal Process Control 69:102920

    Article  MATH  Google Scholar 

  65. Irfan D, Gunawan TS, Wanayumini W (2023) Comparison of SGD, RMSProp, and ADAM optimization in animal classification using CNNs. Proc Int Conf Inf Sci Technol Innov (ICoSTEC) 2(1):45–51

    Google Scholar 

  66. Zhou P, Feng J, Ma C, Xiong C, Hoi SCH (2020) Towards theoretically understanding why sgd generalizes better than adam in deep learning. Adv Neural Inf Process Syst 33:21285–21296

    Google Scholar 

  67. Oktavian MW, Yudistira N, Ridok A (2022) Classification of Alzheimer’s disease using the convolutional neural network (CNN) with transfer learning and weighted loss. ArXiv Preprint https://doi.org/10.48550/arXiv.2207.01584.

  68. Haji SH, Abdulazeez AM (2021) Comparison of optimization techniques based on gradient descent algorithm: a review. PalArch’s J Archaeol Egypt/Egyptol 18(4):2715–2743

    MATH  Google Scholar 

  69. Arafa DA, Moustafa HED, Ali HA, Ali-Eldin AMT, Saraya SF (2024) A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images. Multimedia Tools Appl 83(2):3767–3799

    Article  MATH  Google Scholar 

  70. Uppal M, Gupta D, Juneja S, Gadekallu TR, El Bayoumy I, Hussain J, Lee SW (2023) Enhancing accuracy in brain stroke detection: multilayer perceptron with Adadelta, RMSProp and AdaMax optimizers. Front Bioeng Biotechnol 11:1257591. https://doi.org/10.3389/fbioe.2023.1257591

    Article  Google Scholar 

  71. Hicks SA, Strümke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P, Parasa S (2022) On evaluation metrics for medical applications of artificial intelligence. Sci Rep 12(1):5979

    Article  Google Scholar 

  72. Maxwell AE, Warner TA, Guillén LA (2021) Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 1: Literature review. Remote Sens 13(13):2450

    Article  MATH  Google Scholar 

  73. Vujović Ž (2021) Classification model evaluation metrics. Int J Adv Comput Sci Appl 12(6):599–606

    MATH  Google Scholar 

  74. Mahjoubi MA, Hamida S, Gannour OE, Cherradi B, Abbassi AE, Raihani A (2023) Improved multiclass brain tumor detection using convolutional neural networks and magnetic resonance imaging. Int J Adv Comput Sci Appl 14(3):406–414

    Google Scholar 

  75. Kaur S, Gupta S, Singh S, Gupta I (2022) Detection of Alzheimer’s disease using deep convolutional neural network. Int J Image Graph 22(03):2140012

    Article  MATH  Google Scholar 

  76. Liu, S., Masurkar, A. V., Rusinek, H., Chen, J., Zhang, B., Zhu, W., ... & Razavian, N. (2022). Generalizable deep learning model for early Alzheimer’s disease detection from structural MRIs. Scientific reports, 12(1), 17106.‏

  77. Van der Maaten L, Hinton G (2012) Visualizing non-metric similarities in multiple maps. Mach Learn 87:33–55

    Article  MathSciNet  MATH  Google Scholar 

  78. Alahmad HA, Al-Suhail GA (2024) Medical image classification using deep learning for brain tumors detection: an overview. In: Vasant P et al. Intelligent computing and optimization. ICO 2023. Lecture notes in networks and systems, vol 1169. Springer, Cham. https://doi.org/10.1007/978-3-031-73324-6_20

    Chapter  MATH  Google Scholar 

  79. El-Latif AAA, Chelloug SA, Alabdulhafith M, Hammad M (2023) Accurate detection of Alzheimer’s disease using lightweight deep learning model on MRI data. Diagnostics 13(7):1216

    Article  Google Scholar 

  80. Bangyal WH, Rehman NU, Nawaz A, Nisar K, Ibrahim AAA, Shakir R, Rawat DB (2022) Constructing domain ontology for Alzheimer disease using deep learning-based approach. Electronics, 11(12), 1890.

  81. Irfan M, Shahrestani S, ElKhodr M (2023) The application of deep learning for classification of Alzheimer's disease stages by magnetic resonance imaging data.

  82. El-Assy AM, Amer HM, Ibrahim HM, Mohamed MA (2024) A novel CNN architecture for accurate early detection and classification of Alzheimer’s disease using MRI data. Sci Rep 14(1):3463

    Article  Google Scholar 

Download references

Funding

The authors declare that there was no funding for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, G.A.; Methodology, all authors; Data curation, H.A.; Formal analysis, all authors; Investigation, all authors.; Project administration, G.A.; Python Software Programming, H.A..; Supervision, G.A.; Validation, G.A.; Visualization and Figures, H.A. and G.A.; Writing—original draft, all authors; Writing—review and editing, all authors. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ghaida A. Al-Suhail.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmed, H.A., Al-Suhail, G.A. AlzONet: a deep learning optimized framework for multiclass Alzheimer’s disease diagnosis using MRI brain imaging. J Supercomput 81, 423 (2025). https://doi.org/10.1007/s11227-025-06924-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-06924-5

Keywords