Skip to main content

Advertisement

Log in

Pricing strategies in mobile crowdsensing: an enhanced MAPPO approach using a behavior network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Mobile crowdsensing involves assigning multiple tasks around points of interest to mobile users (MUs) for execution. Developing an optimal task allocation strategy is crucial for the entire system, as it directly impacts the benefits of stakeholders. Leveraging recent advancements in multi-agent reinforcement learning (MARL), which have demonstrated unique advantages in simulating complex interactions among multiple agents, we propose a pricing strategy based on an improved behavior network and multi-agent proximal policy optimization (MAPPO) algorithm. Specifically, we formulate the problem as a multi-leader multi-follower Stackelberg game, and then apply MAPPO, a MARL technique which employs centralized training and decentralized execution, to solve this game. To better capture complex sequential input information and achieve superior behavior strategies, we integrate an attention mechanism with a gated recurrent unit (GRU) network into the actor network, forming a MARL algorithm with an improved behavior network, termed GRU-and-Attention-based MAPPO (GA-MAPPO). Simulation results demonstrate that the proposed GA-MAPPO algorithm is effective compared with baseline approaches. It can learn an optimal pricing strategy that maximizes the benefits of Task Initiators (TIs) and guides TIs in pricing MUs effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alashaikh AS, Alhazemi FM (2022) Efficient mobile crowdsourcing for environmental noise monitoring. IEEE Access 10:77251–77262. https://doi.org/10.1109/ACCESS.2022.3191780

    Article  Google Scholar 

  2. Capponi A, Fiandrino C, Kantarci B et al (2019) A survey on mobile crowdsensing systems: challenges, solutions, and opportunities. IEEE Commun Surv Tutor 21(3):2419–2465. https://doi.org/10.1109/COMST.2019.2914030

    Article  MATH  Google Scholar 

  3. Dai C, Zhu K, Hossain E (2023) Multi-agent deep reinforcement learning for joint decoupled user association and trajectory design in full-duplex multi-uav networks. IEEE Trans Mob Comput 22(10):6056–6070. https://doi.org/10.1109/TMC.2022.3188473

    Article  MATH  Google Scholar 

  4. Dey R, Salem FM (2017) Gate-variants of gated recurrent unit (GRU) neural networks. CoRR abs/1701.05923

  5. Ding R, Yang Z, Wei Y, et al (2021) Multi-agent reinforcement learning for urban crowd sensing with for-hire vehicles. In: IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, pp 1–10, https://doi.org/10.1109/INFOCOM42981.2021.9488713

  6. Duan X, Zhao C, He S et al (2017) Distributed algorithms to compute walrasian equilibrium in mobile crowdsensing. IEEE Trans Industr Electron 64(5):4048–4057. https://doi.org/10.1109/TIE.2016.2645138

    Article  MATH  Google Scholar 

  7. Gao H, Xu H, Li L et al (2022) Mean-field-game-based dynamic task pricing in mobile crowdsensing. IEEE Internet Things J 9(18):18098–18112. https://doi.org/10.1109/JIOT.2022.3161952

    Article  MATH  Google Scholar 

  8. Gu B, Yang X, Lin Z et al (2021) Multiagent actor-critic network-based incentive mechanism for mobile crowdsensing in industrial systems. IEEE Trans Industr Inf 17(9):6182–6191. https://doi.org/10.1109/TII.2020.3024611

    Article  MATH  Google Scholar 

  9. Guo X, Tu C, Hao Y et al (2024) Online user recruitment with adaptive budget segmentation in sparse mobile crowdsensing. IEEE Internet Things J 11(5):8526–8538. https://doi.org/10.1109/JIOT.2023.3318817

    Article  MATH  Google Scholar 

  10. Hu CL, Lin KY, Chang CK (2023) Incentive mechanism for mobile crowdsensing with two-stage stackelberg game. IEEE Trans Serv Comput 16(3):1904–1918. https://doi.org/10.1109/TSC.2022.3198436

    Article  MATH  Google Scholar 

  11. Huang H, Chen T, Wang H, et al (2022) Mappo method based on attention behavior network. In: 2022 10th International Conference on Information Systems and Computing Technology (ISCTech), pp 301–308, https://doi.org/10.1109/ISCTech58360.2022.00054

  12. Jia J, Xing X, Chang DE (2022) Gru-attention based td3 network for mobile robot navigation. In: 2022 22nd International Conference on Control, Automation and Systems (ICCAS), pp 1642–1647, https://doi.org/10.23919/ICCAS55662.2022.10003950

  13. Jiang B, Du J, Jiang C et al (2024) Underwater searching and multiround data collection via auv swarms: an energy-efficient aoi-aware mappo approach. IEEE Internet Things J 11(7):12768–12782. https://doi.org/10.1109/JIOT.2023.3336055

    Article  MATH  Google Scholar 

  14. Kang J, Chen J, Xu M et al (2024) Uav-assisted dynamic avatar task migration for vehicular metaverse services: a multi-agent deep reinforcement learning approach. IEEE/CAA J Autom Sin 11(2):430–445. https://doi.org/10.1109/JAS.2023.123993

    Article  MATH  Google Scholar 

  15. Kong X, Xia F, Li J et al (2020) A shared bus profiling scheme for smart cities based on heterogeneous mobile crowdsourced data. IEEE Trans Industr Inf 16(2):1436–1444. https://doi.org/10.1109/TII.2019.2947063

    Article  MATH  Google Scholar 

  16. Liu Y, Wang H, Peng M et al (2020) Deepga: a privacy-preserving data aggregation game in crowdsensing via deep reinforcement learning. IEEE Internet Things J 7(5):4113–4127. https://doi.org/10.1109/JIOT.2019.2957400

    Article  MATH  Google Scholar 

  17. Liu Y, Wang H, Peng M et al (2021) An incentive mechanism for privacy-preserving crowdsensing via deep reinforcement learning. IEEE Internet Things J 8(10):8616–8631. https://doi.org/10.1109/JIOT.2020.3047105

    Article  MATH  Google Scholar 

  18. Lowe R, Wu Y, Tamar A, et al (2017) Multi-agent actor-critic for mixed cooperative-competitive environments. CoRR abs/1706.02275

  19. Tang L, Cheng Z, Dai J et al (2024) Joint optimization of vehicular sensing and vehicle digital twins deployment for dt-assisted ioVs. IEEE Trans Veh Technol 73(8):11834–11847. https://doi.org/10.1109/TVT.2024.3373175

    Article  Google Scholar 

  20. Wang H (2022) A survey of application and key techniques for mobile crowdsensing. Wirel Commun Mob Comput 2022(1):3693537. https://doi.org/10.1155/2022/3693537

    Article  Google Scholar 

  21. Wang H, Tao J, Chi D et al (2024) Imrsg: incentive mechanism based on rubinstein-starr game for mobile crowdsensing. IEEE Trans Veh Technol 73(2):2656–2668. https://doi.org/10.1109/TVT.2023.3318229

    Article  MATH  Google Scholar 

  22. Xiao L, Chen T, Xie C, et al (2015) Mobile crowdsensing game in vehicular networks. In: TENCON 2015 - 2015 IEEE Region 10 Conference, pp 1–6, https://doi.org/10.1109/TENCON.2015.7372721

  23. Xu Y, Wang Y, Ma J et al (2022) Psare: a rl-based online participant selection scheme incorporating area coverage ratio and degree in mobile crowdsensing. IEEE Trans Veh Technol 71(10):10923–10933. https://doi.org/10.1109/TVT.2022.3183607

    Article  MATH  Google Scholar 

  24. Min M, Zhu H, Yang S, et al (2024) Geo-perturbation for task allocation in 3-d mobile crowdsourcing: An a3c-based approach. IEEE Internet of Things Journal 11(2):1854–1865. https://doi.org/10.1109/JIOT.2023.3295786

    Article  MATH  Google Scholar 

  25. Yang Y, Wang W, Liu L et al (2023) Aoi optimization in the uav-aided traffic monitoring network under attack: a stackelberg game viewpoint. IEEE Trans Intell Transp Syst 24(1):932–941. https://doi.org/10.1109/TITS.2022.3157394

    Article  MATH  Google Scholar 

  26. Yang Y, Du H, Xiong Z, et al (2024) Enhancing wireless networks with attention mechanisms: Insights from mobile crowdsensing

  27. Yu C, Velu A, Vinitsky E, et al (2021) The surprising effectiveness of MAPPO in cooperative, multi-agent games. CoRR abs/2103.01955

  28. Zhan Y, Xia Y, Zhang J (2018) Quality-aware incentive mechanism based on payoff maximization for mobile crowdsensing. Ad Hoc Netw 72:44–55. https://doi.org/10.1016/j.adhoc.2018.01.009

    Article  MATH  Google Scholar 

  29. Zhan Y, Liu CH, Zhao Y et al (2020) Free market of multi-leader multi-follower mobile crowdsensing: an incentive mechanism design by deep reinforcement learning. IEEE Trans Mob Comput 19(10):2316–2329. https://doi.org/10.1109/TMC.2019.2927314

    Article  MATH  Google Scholar 

  30. Zhang E, Trujillo R, Templeton JM et al (2023) A study on mobile crowd sensing systems for healthcare scenarios. IEEE Access 11:140325–140347. https://doi.org/10.1109/ACCESS.2023.3342158

    Article  Google Scholar 

  31. Zhou Y, Tong F, He S (2024) Bi-objective incentive mechanism for mobile crowdsensing with budget/cost constraint. IEEE Trans Mob Comput 23(1):223–237. https://doi.org/10.1109/TMC.2022.3229470

    Article  MATH  Google Scholar 

  32. Zhu Z, Zhao Y, Chen B et al (2023) A crowd-aided vehicular hybrid sensing framework for intelligent transportation systems. IEEE Trans Intell Veh 8(2):1484–1497. https://doi.org/10.1109/TIV.2022.3216318

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proof of theorem 1

The corresponding Lagrangian form of Problem 1 is

$$\begin{aligned} L_n=\sum _m(p_m^nt_m^n-a_m^nt_m^{n2}-b_m^nt_m^n)-\lambda _{n0}(\sum _mt_m^n-\kappa _n)+\sum _m\lambda _{nm}t_m^n, \end{aligned}$$
(A1)

where \({\lambda _{n0}}\) and \({\lambda _{nm}}\) are the Lagrangian multipliers.

The Karush-Kuhn-Tucker (KKT) conditions are given as follows.

$$\begin{aligned} & \frac{{\partial {L_n}}}{{\partial t_m^n}} = 0,\forall m \in \mathcal{M}, \end{aligned}$$
(A2)
$$\begin{aligned} & {\lambda _{n0}}(\mathop \sum \limits _m t_m^n - {\kappa _n}) = 0,{\lambda _{nm}}t_m^n = 0, \end{aligned}$$
(A3)
$$\begin{aligned} & \lambda _{n0},\lambda _{nm}\ge 0,t_m^n\ge 0,\sum _mt_m^n\le \kappa _n. \end{aligned}$$
(A4)

Without loss of generality, we consider \(t_m^n> 0\) and we can obtain that \({\lambda _{nm}} = 0\). Eqn. (A2) can be converted to

$$\begin{aligned} p_m^n - 2a_m^nt_m^n - b_m^n - {\lambda _{n0}} + {\lambda _{nm}} = 0,\forall m \in \mathcal{M}. \end{aligned}$$
(A5)

Then, Eqn. (A5) can be decomposed into two cases as follows.

  1. (1)

    Case I: \({\lambda _{n0}} = 0\), according to Eqn. (A5), we have

    $$\begin{aligned} t_m^n = \frac{{p_m^n - b_m^n}}{{2a_m^n}}. \end{aligned}$$
    (A6)
  2. (2)

    Case II: \({\lambda _{n0}}> 0\), according to Eqn. (A5), we have \(t_m^n = \frac{{p_m^n - b_m^n - {\lambda _{n0}}}}{{2a_m^n}}\). Substituting \(t_m^n\) into Eqn. (A3), we have \({\lambda _{n0}} = \frac{{\left( {\sum \nolimits _m {\left( {p_m^n - b_m^n} \right) \left( {\prod \nolimits _{m1 \ne m} {a_{m1}^n} } \right) } } \right) - 2{\kappa _n}\left( {\prod \nolimits _m {a_m^n} } \right) }}{{\sum \nolimits _m {\left( {\prod \nolimits _{m1 \ne m} {a_{m1}^n} } \right) } }}\), and therefore \(t_m^n\) can be obtained as follows.

    $$t_{m}^{n} = {\text{ }}\left\{ {\begin{array}{*{20}l} {\frac{{p_{m}^{n} - b_{m}^{n} }}{{2a_{m}^{n} }},} \hfill & {{\text{if}}\;\sum\nolimits_{{m = 1}}^{M} {\frac{{p_{m}^{n} - b_{m}^{n} }}{{2a_{m}^{n} }} \le \kappa _{n} ,} } \hfill \\ {\frac{{p_{m}^{n} - b_{m}^{n} - \lambda _{{n0}} }}{{2a_{m}^{n} }},} \hfill & {{\text{else}}\;{\text{if}}\;\lambda _{{n0}} {\text{> }}0,} \hfill \\ {0,} \hfill & {{\text{otherwise}}{\text{.}}} \hfill \\ \end{array} } \right.$$
    (A7)

However, the positive or negative of \(t_m^n\) is not constrained in fact and it is a must. Then, we supplement the above equation. Considering that \(\sum _mt_m^n\le \kappa _n\), we have \({C_1} = \sum \nolimits _m {\min \left( {0,t_m^n} \right) }\) and \({C_2} = \sum \nolimits _m {\max \left( {0,t_m^n} \right) }\), which are the cumulative sum of sensing time that are less than or greater than 0. We process the \(t_m^n\) greater than zero with a specified ratio \({{{C_1}} / {{C_2}}}\) and set the \(t_m^n\) less than 0 to 0, which means the consistent distribution of losses and initial benefit.

In summary, the optimal solution to Problem 1 is given as follows.

$$\left( {t_{m}^{n} } \right)^{*} = {\text{ }}\left\{ {\begin{array}{*{20}l} {t_{m}^{n} \left( {1 - \frac{{\left( { - C_{1} } \right)}}{{C_{2} }}} \right),} \hfill & {{\text{if}}\;C_{1} < 0\;{\text{and}}\;t_{m}^{n} {\text{ }}> 0,} \hfill \\ {0,} \hfill & {{\text{else}}\;{\text{if}}\;C_{1} < 0\;{\text{and}}\;t_{m}^{n} {\text{ }} < 0,} \hfill \\ {t_{m}^{n} ,} \hfill & {{\text{otherwise,}}} \hfill \\ \end{array} } \right.$$
(A8)

where,

$$t_{m}^{n} = {\text{ }}\left\{ {\begin{array}{*{20}l} {\frac{{p_{m}^{n} - b_{m}^{n} }}{{2a_{m}^{n} }},} \hfill & {{\text{if}}\;\sum\nolimits_{{m = 1}}^{M} {\frac{{p_{m}^{n} - b_{m}^{n} }}{{2a_{m}^{n} }} \le \kappa _{n} ,} } \hfill \\ {\frac{{p_{m}^{n} - b_{m}^{n} - \lambda _{{n0}} }}{{2a_{m}^{n} }},} \hfill & {{\text{else}}\;{\text{if}}\;\lambda _{{n0}} {\text{ }}> 0,} \hfill \\ {0,} \hfill & {{\text{otherwise, }}} \hfill \\ \end{array} } \right.$$
(A9)
$$\begin{aligned} {\lambda _{n0}} = \frac{\left( {\sum \nolimits _m {\left( {p_m^n - b_m^n} \right) \left( {\prod \nolimits _{m1 \ne m} {a_{m1}^n} } \right) } } \right) - 2{\kappa _n}\left( {\prod \nolimits _m {a_m^n} } \right) }{\sum \nolimits _m {\left( {\prod \nolimits _{m1 \ne m} {a_{m1}^n} } \right) } }, \end{aligned}$$
(A10)
$$\begin{aligned} {C_1} = \sum \nolimits _m {\min \left( {0,t_m^n} \right) }, \end{aligned}$$
(A11)
$$\begin{aligned} {C_2} = \sum \nolimits _m {\max \left( {0,t_m^n} \right) }. \end{aligned}$$
(A12)

\(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Yu, Y., Huang, T. et al. Pricing strategies in mobile crowdsensing: an enhanced MAPPO approach using a behavior network. J Supercomput 81, 457 (2025). https://doi.org/10.1007/s11227-025-06957-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-06957-w

Keywords