Skip to main content

Advertisement

Log in

Hybrid quantum-classical 3D object detection using multi-channel quantum convolutional neural network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

3D object detection has recently shown remarkable progress in the computer vision field, enabling advanced understanding of the surrounding environment by identifying objects’ shape, position, and depth. However, processing high-dimensional data using classical convolutional neural networks (CNNs) introduces considerable computational challenges. This paper proposes a novel hybrid quantum-classical 3D object detection (HQCOD) approach, integrating a multi-channel quantum convolutional neural network (MC-QCNN) to significantly reduce computational complexity by leveraging quantum computing advantages. Additionally, knowledge distillation (KD) is applied to enhance detection accuracy and model robustness. Experimental evaluations using the Karlsruhe institute of technology and Toyota technological institute (KITTI) dataset validate the scalability and effectiveness, demonstrating the HQCOD as a practical quantum-assisted solution. This study establishes a foundation for extending quantum-enhanced 3D computer vision methods into real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analyz0ed during the current study.

References

  1. Weon I-S, Lee S-G, Ryu J-K (2020) Object recognition based interpolation with 3D LIDAR and vision for autonomous driving of an intelligent vehicle. IEEE Access 8:65599–65608

    Article  MATH  Google Scholar 

  2. Mao J, Shi S, Wang X, Li H (2023) 3D object detection for autonomous driving: a comprehensive survey. Int. J. Comput. Vision 131(8):1909–1963

    Article  MATH  Google Scholar 

  3. Li Z (2022) LiDAR-based 3D object detection for autonomous driving. In: Proc. of the International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi’an, China, pp. 507–512

  4. Chen L, Hussain A, Liu Y, Tan J, Li Y, Yang Y, Ma H, Fu S, Li G (2024) A novel multi-sensor nonlinear tightly-coupled framework for composite robot localization and mapping. Sensors 24(22):7381

    Article  MATH  Google Scholar 

  5. Wang L, Zhang X, Song Z, Bi J, Zhang G, Wei H, Tang L, Yang L, Li J, Jia C et al (2023) Multi-modal 3D object detection in autonomous driving: a survey and taxonomy. IEEE Trans. Intell. Veh. 8(7):3781–3798

    Article  MATH  Google Scholar 

  6. Chen L, Li G, Zhao K, Zhang G, Zhu X (2023) A perceptually adaptive long-term tracking method for the complete occlusion and disappearance of a target. Cognit Comput 15(6):2120–2131

    Article  MATH  Google Scholar 

  7. Gao H, Yu X, Xu Y, Kim JY, Wang Y (2024) MonoLI: precise monocular 3D object detection for next-generation consumer electronics for autonomous electric vehicles. IEEE Trans Consum Electron 70(1):3475–3486

    Article  MATH  Google Scholar 

  8. O’Shea K, Nash R (2015) An introduction to convolutional neural networks. CoRR abs/1511.08458

  9. Zhu Y, Bouridane A, Celebi ME, Konar D, Angelov P, Ni Q, Jiang R (2024) Quantum face recognition with multigate quantum convolutional neural network. IEEE Trans Artif Intell 5(12):6330–6341

    Article  Google Scholar 

  10. Friedman JR, Patel V, Chen W, Tolpygo S, Lukens JE (2000) Quantum superposition of distinct macroscopic states. Nature 406(6791):43–46

    Article  Google Scholar 

  11. Życzkowski K, Horodecki P, Horodecki M, Horodecki R (2001) Dynamics of quantum entanglement. Phys Rev A 65(1):012101

    Article  MathSciNet  MATH  Google Scholar 

  12. Cerezo M, Verdon G, Huang H, Cincio L, Coles PJ (2022) Challenges and opportunities in quantum machine learning. Nat Comput Sci 2(9):567–576

    Article  MATH  Google Scholar 

  13. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, pp. 3354–3361

  14. Nagiub AS, Fayez M, Khaled H, Ghoniemy S (2024) 3D object detection for autonomous driving: a comprehensive review. In: Proc. of the International Conference on Computing and Informatics (ICCI), New Cairo - Cairo, Egypt, pp. 01–11

  15. Zhou Y, Tuzel O (2018) VoxelNet: End-to-End learning for point cloud based 3D object detection. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 4490–4499

  16. Wu Y, Wang Y, Zhang S, Ogai H (2021) Deep 3D object detection networks using LiDAR data: a review. IEEE Sens J 21(2):1152–1171

    Article  MATH  Google Scholar 

  17. Chen L, Li G, Xie W, Tan J, Li Y, Pu J, Chen L, Gan D, Shi W (2024) A survey of computer vision detection, visual SLAM algorithms, and their applications in energy-efficient autonomous systems. Energies (19961073) 17(20)

  18. Ranasinghe Y, Hegde D, Patel VM (2024) MonoDiff: Monocular 3D object detection and pose estimation with diffusion models. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, pp. 10659–10670

  19. Liu Z, Wu Z, Toth R (2020) SMOKE: Single-stage monocular 3D object detection via keypoint estimation . In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Los Alamitos, CA, USA, pp. 4289–4298

  20. Zhao X, Wang L, Zhang Y, Han X, Deveci M, Parmar M (2024) A review of convolutional neural networks in computer vision. Artif Intell Rev 57(4):99

    Article  MATH  Google Scholar 

  21. Rajesh V, Naik UP (2021) Mohana: Quantum convolutional neural networks (QCNN) using deep learning for computer vision applications. In: Proc. of the International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, pp. 728–734

  22. Stein S, Mao Y, Ang J, Li A (2022) QuCNN: a quantum convolutional neural network with entanglement based backpropagation. In: Proc. of the IEEE/ACM Symposium on Edge Computing (SEC), Seattle,WA, USA, pp. 368–374

  23. Smaldone AM, Kyro GW, Batista VS (2023) Quantum convolutional neural networks for multi-channel supervised learning. Quantum Mach Intell 5(2):41

    Article  MATH  Google Scholar 

  24. Mishra S, Tsai C-Y (2023) QSurfNet: a hybrid quantum convolutional neural network for surface defect recognition. Quantum Inf Process 22(5):179

    Article  MathSciNet  MATH  Google Scholar 

  25. Roh EJ, Baek H, Kim D, Kim J (2025) Fast quantum convolutional neural networks for low-complexity object detection in autonomous driving applications. IEEE Trans Mobile Comput 24(2):1031–1042

    Article  MATH  Google Scholar 

  26. Li Y, Hao X, Liu G, Shang R, Jiao L (2024) QEA-QCNN: optimization of quantum convolutional neural network architecture based on quantum evolution. Memet Comput 16(3):233–254

    Article  MATH  Google Scholar 

  27. Hasan MJ, Mahdy M (2023) Bridging classical and quantum machine learning: knowledge transfer from classical to quantum neural networks using knowledge distillation. arXiv preprint arXiv:2311.13810

  28. Baek H, Yun WJ, Park S, Kim J (2023) Stereoscopic scalable quantum convolutional neural networks. Neural Netw 165:860–867

    Article  MATH  Google Scholar 

  29. Qi H, Wang L, Zhu H, Gani A, Gong C (2023) The barren plateaus of quantum neural networks: review, taxonomy and trends. Quantum Inf Process 22(12):435

    Article  MathSciNet  MATH  Google Scholar 

  30. Bazgir A, Praneeth Madugula R, Zhang Y (2024) Quantum 3D visual grounding: a step towards quantum-inspired AI-visualization. In: Proc. of the International Conference on Machine Learning (ICML) Workshop on Foundation Models in the Wild, Vienna, Austria

  31. Park S, Chung J, Park C, Jung S, Choi M, Cho S, Kim J (2024) Joint quantum reinforcement learning and stabilized control for spatio-temporal coordination in metaverse. IEEE Trans Mobile Comput 23(12):12410–12427

    Article  MATH  Google Scholar 

  32. Park S, Kim GS, Han Z, Kim J (2024) Quantum multi-agent reinforcement learning is all you need: coordinated global access in integrated TN/NTN cube-satellite networks. IEEE Commun Mag 62(10):86–92

    Article  MATH  Google Scholar 

  33. Mitsuda N, Ichimura T, Nakaji K, Suzuki Y, Tanaka T, Raymond R, Tezuka H, Onodera T, Yamamoto N (2024) Approximate complex amplitude encoding algorithm and its application to data classification problems. Phys Rev A 109(5):052423

    Article  MathSciNet  MATH  Google Scholar 

  34. Walls D, Collet M, Milburn G (1985) Analysis of a quantum measurement. Phys Rev D 32(12):3208

    Article  MathSciNet  MATH  Google Scholar 

  35. Rajesh V, Naik UP et al (2021) Quantum convolutional neural networks using deep learning for computer vision applications. In: Proc. IEEE International Conference on Recent Trends on Electronics, Information, Communication & Technology, Bangalore, India, pp. 728–734

  36. Bai Q, Hu X (2024) Superposition-enhanced quantum neural network for multi-class image classification. Chin J Phys 89:378–389

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang H, Li T, Li F (2024) Joint mitigation of quantum gate and measurement errors via the z-mixed-state expression of the Pauli channel. Quantum Inf Process 23(6):213

    Article  MathSciNet  MATH  Google Scholar 

  38. Ajlouni N, Özyavaş A, Takaoğlu M, Takaoğlu F, Ajlouni F (2023) Medical image diagnosis based on adaptive hybrid quantum CNN. BMC Med Imaging 23(1):126

    Article  MATH  Google Scholar 

  39. Wang H, Ma C (2021) An optimization of im2col, an important method of cnns, based on continuous address access. In: Proc. of the IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, pp. 314–320

  40. LaRose R, Coyle B (2020) Robust data encodings for quantum classifiers. Phys Rev A 102(3):032420

    Article  MATH  Google Scholar 

  41. Oh S, Choi J, Kim J, Kim J (2021) Quantum convolutional neural network for resource-efficient image classification: a quantum random access memory (QRAM) approach. In: Proc. of the IEEE International Conference on Information Networking (ICOIN), Jeju Island, South Korea, pp. 50–52

  42. Shen F, Liu J (2023) Quantum Fourier convolutional network. ACM Trans Multimed Comput, Commun Appl 19(1):1–14

    Article  MATH  Google Scholar 

  43. Kerenidis I, Landman J, Prakash A (2020) Quantum algorithms for deep convolutional neural networks. In: Proc. International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia

  44. Xiao B, Wu H, Wei Y (2018) Simple baselines for human pose estimation and tracking. In: Proc. of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 466–481

  45. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770–778

  46. Zhao G, Ge W, Yu Y (2021) GraphFPN: graph feature pyramid network for object detection. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 2763–2772

  47. Qian J, Panagopoulos A, Jayaraman D (2022) Discovering deformable keypoint pyramids. In: Proc. of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, pp. 545–561

  48. Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2024) CenterNet++ for object detection. IEEE Trans Pattern Anal Mach Intell 46(5):3509–3521

    Article  Google Scholar 

  49. Gharamohammadi A, Pirani M, Khajepour A, Shaker G (2024) Multibin breathing pattern estimation by Radar fusion for enhanced driver monitoring. IEEE Trans Instrum Measurement 73:1–12

    Article  Google Scholar 

  50. Ross T-Y, Dollár G (2017) Focal loss for dense object detection. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 2980–2988

  51. Law H, Deng J (2018) Cornernet: Detecting objects as paired keypoints. In: Proc. of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 734–750

  52. Song H, Wei C, Yong Z (2023) Efficient knowledge distillation for remote sensing image classification: a CNN-based approach. Int J Web Inf Syst 20(2):129–158

    MATH  Google Scholar 

  53. Huang Z, Yang S, Zhou M, Li Z, Gong Z, Chen Y (2022) Feature map distillation of thin nets for low-resolution object recognition. IEEE Trans Image Process 31:1364–1379

    Article  MATH  Google Scholar 

  54. Wang H, Li Z, Gu J, Ding Y, Pan DZ, Han S (2022) QOC: Quantum on-chip training with parameter shift and gradient pruning. In: Proc. IEEE/ACM Design Automation Conference, San Francisco, CA, USA, pp. 665–660

  55. Li P, Zhao H, Liu P, Cao F (2020) Rtm3D: real-time monocular 3D detection from object keypoints for autonomous driving. In: Proc. of the European Conference on Computer Vision (ECCV), Glasgow, UK, pp. 644–660

  56. Ren S, He K, Girshick R, Sun J (2016) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  MATH  Google Scholar 

  57. Khalid U, Rehman JU, Paing SN, Jung H, Duong TQ, Shin H (2023) Quantum network engineering in the NISQ age: principles, missions, and challenges. IEEE Netw 38(1):112–123

    Article  Google Scholar 

  58. Hossain S, Umer S, Rout RK, Marzouqi HA (2024) A deep quantum convolutional neural network based facial expression recognition for mental health analysis. IEEE Trans Neural Syst Rehabilit Eng 32:1556–1565

    Article  MATH  Google Scholar 

  59. Zheng J, Gao Q, Ogorzałek M, Lü J, Deng Y (2024) A quantum spatial graph convolutional neural network model on quantum circuits. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2024.3382174

    Article  MATH  Google Scholar 

  60. Zhu Y, Bouridane A, Celebi ME, Konar D, Angelov P, Ni Q, Jiang R (2024) Quantum face recognition with multi-gate quantum convolutional neural network. IEEE Trans Artif Intell 5(12):6330–6341

    Article  Google Scholar 

  61. Buscemi F, Hall MJ, Ozawa M, Wilde MM (2014) Noise and disturbance in quantum measurements: an information-theoretic approach. Phys Rev Lett 112(5):050401

    Article  MATH  Google Scholar 

  62. De Ronde C (2018) Quantum superpositions and the representation of physical reality beyond measurement outcomes and mathematical structures. Found Sci 23:621–648

    Article  MathSciNet  MATH  Google Scholar 

  63. Li Y, Ren Z (2023) Quantum metrology with an N-qubit W superposition state under noninteracting and interacting operations. Phys Rev A 107(1):012403

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government [MSIT (Ministry of Science and ICT (Information and Communications Technology))] (RS-2024-00439803, SW Star Lab) for Quantum AI Empowered Second-Life Platform Technology.

Author information

Authors and Affiliations

Authors

Contributions

Emily Jimin Roh is a main investigator for this work (including idea investigation, writing, and performance evaluation). Joo Yong Shim and Soohyun Park are for the discussions of the idea and proof-reading. Joongheon Kim is a principal investigator for this research and supervision for the entire process.

Corresponding authors

Correspondence to Joo Yong Shim, Joongheon Kim or Soohyun Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, E.J., Shim, J.Y., Kim, J. et al. Hybrid quantum-classical 3D object detection using multi-channel quantum convolutional neural network. J Supercomput 81, 455 (2025). https://doi.org/10.1007/s11227-025-06968-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-06968-7

Keywords