Skip to main content

Advertisement

Log in

Chinese Pangolin Optimizer: a novel bio-inspired metaheuristic for solving optimization problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper proposes a novel bio-inspired metaheuristic algorithm, the Chinese pangolin optimizer (CPO), which draws inspiration from the unique hunting behaviors of Chinese pangolins. Chinese pangolins, leveraging their acute sense of smell and innate hunting instincts, can precisely perceive the distance between themselves and their prey, enabling efficient transitions between luring and predation behaviors. The luring behavior consists of two stages: attracting and capturing and moving to feed, while the predation behavior involves three stages: searching and locating, rapid approaching, and digging to feed. These behaviors were successfully simulated through mathematical modeling, and the algorithm’s convergence was systematically analyzed using Markov chain theory, theoretically ensuring the efficiency and reliability of the algorithm in the optimization process. To comprehensively evaluate the performance of the CPO algorithm, 74 standard benchmark functions were utilized, covering unimodal, multimodal, and fixed-dimension multimodal functions, as well as the CEC2017, CEC2019, and CEC2022 test suites. The experimental results and statistical analyses indicate that the CPO algorithm is effective and convergent when addressing complex numerical optimization problems. The CPO algorithm was also successfully applied to three standard engineering design optimization problems and twelve feature selection tasks, further validating its broad applicability and scalability in real-world problems. The experimental results demonstrate that the CPO algorithm outperforms various baseline metaheuristic algorithms and mainstream feature selection methods regarding optimization performance and classification accuracy, fully showcasing its broad applicability and superiority in solving complex real-world problems. Source codes of CPO are publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/178109-chinese-pangolin-optimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Algorithm 1
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31.
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

    Article  MATH  Google Scholar 

  2. Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Article  MATH  Google Scholar 

  3. Abualigah L, Diabat A, Mirjalili S et al (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu G, Pedrycz W, Suganthan PN, Mallipeddi R (2015) A variable reduction strategy for evolutionary algorithms handling equality constraints. Appl Soft Comput 37:774–786

    Article  MATH  Google Scholar 

  5. Abbassi R, Abbassi A, Heidari AA, Mirjalili S (2019) An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers Manage 179:362–372

    Article  MATH  Google Scholar 

  6. Faris H et al (2019) An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Inf Fus 48:67–83

    Article  MATH  Google Scholar 

  7. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  MATH  Google Scholar 

  8. Zhiqing GUO (2022) Research on Feature Selection Method Based on Improved Whale Optimization Algorithm. Master Thesis, Liaoning Technical University

  9. Kareem SW, Ali KWH, Askar S et al (2022) Metaheuristic algorithms in optimization and its application: a review. JAREE J Adv Res Electr Eng. https://doi.org/10.12962/jaree.v6i1.216

    Article  MATH  Google Scholar 

  10. Pan J-S, Hu P, Snášel V, Chu S-C (2023) A survey on binary metaheuristic algorithms and their engineering applications. Artif Intell Rev 56:6101–6167

    Article  MATH  Google Scholar 

  11. Nassef AM, Abdelkareem MA, Maghrabie HM, Baroutaji A (2023) Review of metaheuristic optimization algorithms for power systems problems. Sustainability 15:9434

    Article  Google Scholar 

  12. Kaur S, Kumar Y, Koul A, Kumar Kamboj S (2023) A systematic review on metaheuristic optimization techniques for feature selections in disease diagnosis: open issues and challenges. Arch Comput Methods Eng 30:1863–1895

    Article  MATH  Google Scholar 

  13. Wong WK, Ming CI (2019) A review on metaheuristic algorithms: recent trends, benchmarking and applications. In: 2019 7th international conference on smart computing and communications (ICSCC). IEEE, pp 1–5

  14. Osaba E, Villar-Rodriguez E, Del Ser J et al (2021) A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm Evol Comput 64:100888

    Article  MATH  Google Scholar 

  15. Khanduja N, Bhushan B (2021) Recent advances and application of metaheuristic algorithms: a survey (2014–2020). In: Malik H, Iqbal A, Joshi P et al (eds) Metaheuristic and evolutionary computation: algorithms and applications. Springer, Singapore, pp 207–228

    MATH  Google Scholar 

  16. Ɖurasević M, Jakobović D (2023) Heuristic and metaheuristic methods for the parallel unrelated machines scheduling problem: a survey. Artif Intell Rev 56:3181–3289

    Article  MATH  Google Scholar 

  17. Schlenkrich M, Parragh SN (2023) Solving large scale industrial production scheduling problems with complex constraints: an overview of the state-of-the-art. Procedia Comput Sci 217:1028–1037

    Article  MATH  Google Scholar 

  18. Peiris A, Hui FKP, Duffield C, Ngo T (2023) Production scheduling in modular construction: metaheuristics and future directions. Autom Constr 150:104851

    Article  MATH  Google Scholar 

  19. Fazli M, Faraji Amoogin S (2023) A review of meta-heuristic methods for solving location allocation financial problems. Adv Math Finance Appl 4:719

    MATH  Google Scholar 

  20. Sulaman M, Golabi M, Essaid M et al (2024) Surrogate-assisted metaheuristics for the facility location problem with distributed demands on network edges. Comput Ind Eng 188:109931

    Article  MATH  Google Scholar 

  21. Hajipour V, Niaki STA, Tavana M et al (2023) A comparative performance analysis of intelligence-based algorithms for optimizing competitive facility location problems. Mach Learn Appl 11:100443

    MATH  Google Scholar 

  22. Salminen J, Mustak M, Sufyan M, Jansen BJ (2023) How can algorithms help in segmenting users and customers? A systematic review and research agenda for algorithmic customer segmentation. J Market Anal 11:677–692

    Article  Google Scholar 

  23. Zervoudakis K, Tsafarakis S (2025) Customer segmentation using flying fox optimization algorithm J. Comb Optim 49:5

    Article  MathSciNet  MATH  Google Scholar 

  24. Pillai P, Kulkarni P (2023) A study on heuristic and non-heuristic clustering techniques for customer segmentation. In: 2023 14th international conference on computing communication and networking technologies (ICCCNT). IEEE, pp 1–5

  25. Tang J, Pan Q, Chen Z et al (2024) An improved artificial electric field algorithm for robot path planning. IEEE Trans Aerospace Electron Syst 60:2292–2304

    Article  MATH  Google Scholar 

  26. Tan CS, Mohd-Mokhtar R, Arshad MR (2021) A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms. IEEE Access 9:119310–119342

    Article  MATH  Google Scholar 

  27. Hussein A, Mostafa H, Badrel-din M, et al (2012) Metaheuristic optimization approach to mobile robot path planning. In: 2012 international conference on engineering and technology (ICET). IEEE, pp 1–6

  28. Xu Y, Li Q, Xu X et al (2023) Research progress of nature-inspired metaheuristic algorithms in mobile robot path planning. Electronics 12:3263

    Article  MATH  Google Scholar 

  29. Singh J, Sandhu JK, Kumar Y (2024) Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning. SOCA 18:163–182

    Article  MATH  Google Scholar 

  30. Sharma S, Alam A, Sharma A, Singh P (2024) Metaheuristics algorithms for complex disease prediction. In: Anter AM, Elhoseny M, Thakare AD (eds) Nature-inspired methods for smart healthcare systems and medical data. Springer, Cham, pp 169–180

    Chapter  MATH  Google Scholar 

  31. Lameesa A, Hoque M, Alam MSB et al (2024) Role of metaheuristic algorithms in healthcare: a comprehensive investigation across clinical diagnosis, medical imaging, operations management, and public health. J Comput Des Eng 11:223–247

    MATH  Google Scholar 

  32. Emam MM, Houssein EH, Ghoniem RM (2023) A modified reptile search algorithm for global optimization and image segmentation: case study brain MRI images. Comput Biol Med 152:106404

    Article  Google Scholar 

  33. Singhal A, Bisht S (2024) Image segmentation using metaheuristic. In: Artificial intelligence and machine learning techniques in image processing and computer vision, pp 169–189

  34. Abualigah L, Almotairi KH, Elaziz MA (2023) Multilevel thresholding image segmentation using meta-heuristic optimization algorithms: comparative analysis, open challenges and new trends. Appl Intell 53:11654–11704

    Article  MATH  Google Scholar 

  35. Holland JH (1962) Outline for a logical theory of adaptive systems. J ACM 9:297–314

    Article  MATH  Google Scholar 

  36. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4:65–85

    Article  MATH  Google Scholar 

  37. Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC). IEEE, pp 1658–1665

  38. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  39. Beyer H-G, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1:3–52

    Article  MathSciNet  MATH  Google Scholar 

  40. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. In: Caltech concurrent computation program, C3P Report, vol 826, p 37

  41. Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4:87–112

    Article  MATH  Google Scholar 

  42. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  MATH  Google Scholar 

  43. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. Citeseer, pp 1942–1948

  44. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39

    Article  MATH  Google Scholar 

  45. Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl 149:113338

    Article  Google Scholar 

  46. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf optimizer. Adv Eng Softw 69:46–61

    Article  MATH  Google Scholar 

  47. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  MATH  Google Scholar 

  48. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  MATH  Google Scholar 

  49. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23:715–734

    Article  MATH  Google Scholar 

  50. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Article  Google Scholar 

  51. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  MATH  Google Scholar 

  52. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  53. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  MATH  Google Scholar 

  54. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  MATH  Google Scholar 

  55. Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

  56. Chopra N, Ansari MM (2022) Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst Appl 198:116924

    Article  Google Scholar 

  57. Wang L, Cao Q, Zhang Z et al (2022) Artificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 114:105082

    Article  MATH  Google Scholar 

  58. Alsattar HA, Zaidan AA, Zaidan BB (2020) Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev 53:2237–2264

    Article  MATH  Google Scholar 

  59. Cuevas E, González M, Zaldivar D et al (2012) An algorithm for global optimization inspired by collective animal behavior. Discret Dyn Nat Soc 2012:638275

    Article  MathSciNet  MATH  Google Scholar 

  60. Zaldívar D, Morales B, Rodríguez A et al (2018) A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior. Biosystems 174:1–21

    Article  MATH  Google Scholar 

  61. Al-Betar MA, Awadallah MA, Braik MS et al (2024) Elk herd optimizer: a novel nature-inspired metaheuristic algorithm. Artif Intell Rev 57:1–60

    Article  MATH  Google Scholar 

  62. Wang G-G, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31:1995–2014

    Article  Google Scholar 

  63. Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput 10:151–164

    Article  MATH  Google Scholar 

  64. Tu J, Chen H, Wang M, Gandomi AH (2021) The colony predation algorithm. J Bionic Eng 18:674–710

    Article  MATH  Google Scholar 

  65. Jia H, Peng X, Lang C (2021) Remora optimization algorithm. Expert Syst Appl 185:115665

    Article  MATH  Google Scholar 

  66. Jia H, Rao H, Wen C, Mirjalili S (2023) Crayfish optimization algorithm. Artif Intell Rev 56:1919–1979

    Article  MATH  Google Scholar 

  67. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Article  MATH  Google Scholar 

  68. Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Stat Sci 8:10–15

    Article  MATH  Google Scholar 

  69. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  70. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513

    Article  MATH  Google Scholar 

  71. Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl-Based Syst 163:283–304

    Article  MATH  Google Scholar 

  72. Ahmadianfar I, Heidari AA, Gandomi AH et al (2021) RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 181:115079

    Article  Google Scholar 

  73. Ahmadianfar I, Heidari AA, Noshadian S et al (2022) INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl 195:116516

    Article  Google Scholar 

  74. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  MATH  Google Scholar 

  75. Pan Q, Tang J, Lao S (2022) EDOA: an elastic deformation optimization algorithm. Appl Intell 52:17580–17599

    Article  MATH  Google Scholar 

  76. Punnathanam V, Kotecha P (2016) Yin-yang-pair optimization: a novel lightweight optimization algorithm. Eng Appl Artif Intell 54:62–79

    Article  Google Scholar 

  77. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315

    Article  MATH  Google Scholar 

  78. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. IEEE, pp 4661–4667

  79. Kumar M, Kulkarni AJ, Satapathy SC (2018) Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology. Futur Gener Comput Syst 81:252–272

    Article  MATH  Google Scholar 

  80. Shi Y (2011) Brain storm optimization algorithm. In: Advances in swarm intelligence: second international conference, ICSI 2011, Chongqing, China, June 12–15, 2011, Proceedings, Part I 2. Springer, pp 303–309

  81. Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864

    Article  Google Scholar 

  82. Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the 3rd annual conference on evolutionary programming, World Scientific Publishing. World Scientific, pp 131–139

  83. Wang L, Yang R, Ni H et al (2015) A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Appl Soft Comput 34:736–743

    Article  MATH  Google Scholar 

  84. Setiawan D, Suyanto S, Erfianto B, Gozali AA (2025) Battlefield optimization algorithm. Expert Syst Appl 266:126097

    Article  Google Scholar 

  85. Binu D, Kariyappa BS (2018) RideNN: a new rider optimization algorithm-based neural network for fault diagnosis in analog circuits. IEEE Trans Instrum Meas 68:2–26

    Article  Google Scholar 

  86. Gupta AK, Smith KG, Shalley CE (2006) The interplay between exploration and exploitation. Acad Manag J 49:693–706

    Article  MATH  Google Scholar 

  87. Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evol Comput 9:126–142

    Article  MATH  Google Scholar 

  88. Lin L, Gen M (2009) Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Comput 13:157–168

    Article  MATH  Google Scholar 

  89. Olorunda O, Engelbrecht AP (2008) Measuring exploration/exploitation in particle swarms using swarm diversity. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, pp 1128–1134

  90. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 45:1–33

    Article  MATH  Google Scholar 

  91. Hussain K, Salleh MNM, Cheng S, Shi Y (2019) On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput Appl 31:7665–7683

    Article  MATH  Google Scholar 

  92. Tzanetos A, Dounias G (2021) Nature inspired optimization algorithms or simply variations of metaheuristics? Artif Intell Rev 54:1841–1862

    Article  MATH  Google Scholar 

  93. Lones MA (2019) Mitigating metaphors: a comprehensible guide to recent nature-inspired algorithms. SN Comput Sci 1:49

    Article  MATH  Google Scholar 

  94. Sörensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22:3–18

    Article  MathSciNet  MATH  Google Scholar 

  95. Aranha C, Camacho Villalón CL, Campelo F et al (2022) Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell 16:1–6

    Article  Google Scholar 

  96. Vermetten D, Doerr C, Wang H, et al (2024) Large-scale benchmarking of metaphor-based optimization heuristics. In: Proceedings of the genetic and evolutionary computation conference. Association for computing machinery, New York, NY, USA, pp 41–49

  97. Velasco L, Guerrero H, Hospitaler A (2024) A literature review and critical analysis of metaheuristics recently developed. Arch Computat Methods Eng 31:125–146

    Article  MATH  Google Scholar 

  98. Weyland D (2010) A rigorous analysis of the harmony search algorithm: how the research community can be misled by a “novel” methodology. IJAMC 1:50–60

    MATH  Google Scholar 

  99. Camacho-Villalón CL, Dorigo M, Stützle T (2023) Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: six misleading optimization techniques inspired by bestial metaphors. Int Trans Oper Res 30:2945–2971

    Article  MathSciNet  MATH  Google Scholar 

  100. Ramos-Michel A, Navarro MA, Morales-Castañeda B et al (2022) Solving reality-based trajectory optimization problems with metaheuristic algorithms inspired by metaphors. Integrating meta-heuristics and machine learning for real-world optimization problems. Springer, Cham, pp 363–397

    Chapter  MATH  Google Scholar 

  101. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  MATH  Google Scholar 

  102. Liu W, Guo Z, Jiang F et al (2022) Improved WOA and its application in feature selection. PLoS ONE 17:e0267041

    Article  Google Scholar 

  103. Liu G, Guo Z, Liu W et al (2023) MSHHOTSA: A variant of tunicate swarm algorithm combining multi-strategy mechanism and hybrid Harris optimization. PLoS ONE 18:e0290117

    Article  MATH  Google Scholar 

  104. Allen GM (1940) Mammals of China and Mongolia. Part 2. Publ Am Mus Nat Hist, Central Asiatic Exped 11:621–1350

    MATH  Google Scholar 

  105. Corbet GB, Hill JE (1992) The mammals of the Indomalayan region: a systematic review. Oxford University Press, Oxford

    MATH  Google Scholar 

  106. Gaubert P, Antunes A (2005) Assessing the taxonomic status of the Palawan pangolin Manis culionensis (Pholidota) using discrete morphological characters. J Mammal 86:1068–1074

    Article  Google Scholar 

  107. Wu S (2005) Observation on food habits and foraging behavior of Chinese pangolin (Manis pentadactyla). Chin J App Environ Biol 11:337

    MATH  Google Scholar 

  108. Liu ZH, Xu LH (1981) Pangolin’s habits and its resource protection. Chin J Zool 16:40–41

    MATH  Google Scholar 

  109. Heath ME (1992) Manis pentadactyla. Mammalian species, pp 1–6

  110. Wu SB, Ma GZ, Liao QX, Lu KH (2005) Studies of conservation biology on Chinese Pangolin (Manis pentadactyla). China Forestry Publishing House, Beijing

    Google Scholar 

  111. Sun NC-M, Lo FH-Y, Chen B-Y et al (2020) Digesta retention time and recovery rates of ants and termites in Chinese pangolins (Manis pentadactyla). Zoo Biol 39:168–175

    Article  Google Scholar 

  112. Shi YQ, Wang YG (1985) The preliminary study on captive breeding pangolins. For Sci Technol 10:28–29

    MATH  Google Scholar 

  113. Wu S, Sun NC-M, Zhang F, et al (2020) Chinese pangolin Manis pentadactyla (Linnaeus, 1758). In: Pangolins. Elsevier, pp 49–70

  114. Green AES, Singhal RP, Venkateswar R (1980) Analytic extensions of the Gaussian plume model. J Air Pollut Control Assoc 30:773–776

    Article  MATH  Google Scholar 

  115. Turner DB (2020) Workbook of atmospheric dispersion estimates: an introduction to dispersion modeling. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  116. Turner DB (1964) A diffusion model for an urban area. J Appl Meteorol Climatol 3:83–91

    Article  MATH  Google Scholar 

  117. Chakraborty P, Sharma S, Saha AK (2023) Convergence analysis of butterfly optimization algorithm. Soft Comput 27:7245–7257

    Article  MATH  Google Scholar 

  118. Luo J, Li X, Chen M (2010) The Markov model of shuffled frog leaping algorithm and its convergence analysis. Acta Electon Sinica 38:2875

    MATH  Google Scholar 

  119. Ning AP, Zhang XY (2013) Convergence analysis of artificial bee colony algorithm. Control Dec 28:1554–1558

    MATH  Google Scholar 

  120. Solis FJ, Wets RJ-B (1981) Minimization by random search techniques. Math Oper Res 6:19–30

    Article  MathSciNet  MATH  Google Scholar 

  121. Zhang X, Wang H, Sun B et al (2013) The Markov model of bean optimization algorithm and its convergence analysis. Int J Comput Intell Syst 6:609–615

    Article  MATH  Google Scholar 

  122. Zhao W, Wang L, Zhang Z (2020) Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput Appl 32:9383–9425

    Article  MATH  Google Scholar 

  123. Wilcoxon F (1992) Individual comparisons by ranking methods. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics: methodology and distribution. Springer, New York, pp 196–202

    Chapter  MATH  Google Scholar 

  124. de Barros RSM, Hidalgo JIG, de Lima Cabral DR (2018) Wilcoxon rank sum test drift detector. Neurocomputing 275:1954–1963

    Article  Google Scholar 

  125. Sheldon MR, Fillyaw MJ, Thompson WD (1996) The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiother Res Int 1:221–228

    Article  MATH  Google Scholar 

  126. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127

    Article  MATH  Google Scholar 

  127. Abualigah L, Yousri D, Abd Elaziz M et al (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  MATH  Google Scholar 

  128. Yang X, Wang R, Zhao D et al (2023) An adaptive quadratic interpolation and rounding mechanism sine cosine algorithm with application to constrained engineering optimization problems. Expert Syst Appl 213:119041

    Article  Google Scholar 

  129. Rao H, Jia H, Wu D et al (2022) A modified group teaching optimization algorithm for solving constrained engineering optimization problems. Mathematics 10:3765

    Article  MATH  Google Scholar 

  130. Wu T, Wu D, Jia H et al (2022) A modified gorilla troops optimizer for global optimization problem. Appl Sci 12:10144

    Article  MATH  Google Scholar 

  131. Gezici H, Livatyalı H (2022) Chaotic Harris hawks optimization algorithm. J Comput Des Eng 9:216–245

    Google Scholar 

  132. Liu G, Guo Z, Liu W et al (2024) A feature selection method based on the Golden Jackal-Grey Wolf Hybrid optimization algorithm. PLoS ONE 19:e0295579

    Article  MATH  Google Scholar 

  133. Mafarja M, Mirjalili S (2018) Whale optimization approaches for wrapper feature selection. Appl Soft Comput 62:441–453

    Article  MATH  Google Scholar 

  134. Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection. Neurocomputing 213:54–65

    Article  Google Scholar 

  135. Bache KML (2013) UCI machine learning repository. In: http://archive.ics.uci.edu/ml. http://archive.ics.uci.edu/ml. Accessed 25 Mar 2023

  136. Meyer PE, Bontempi G (2006) On the use of variable complementarity for feature selection in cancer classification. In: Rothlauf F, Branke J, Cagnoni S et al (eds) Applications of evolutionary computing. Springer, Berlin, pp 91–102

    Chapter  MATH  Google Scholar 

  137. Jakulin A (2005) Machine learning based on attribute interactions. PhD Thesis, Univerza v Ljubljani

  138. Yang H, Moody J (1999) Data visualization and feature selection: New algorithms for Nongaussian data. In: Advances in neural information processing systems, vol 12

  139. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5:537–550

    Article  MATH  Google Scholar 

  140. Lewis DD (1992) Feature selection and feature extraction for text categorization. In: Speech and natural language: proceedings of a workshop held at Harriman, New York, February 23–26, 1992

  141. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (52374123).

Author information

Authors and Affiliations

Authors

Contributions

Zhiqing GUO: Conceptualization, Methodology, Software, Validation, Investigation, Formal analysis, Writing-Original Draft, Writing-Review and Editing, Visualization. Guangwei LIU: Investigation, Writing-review and editing, Supervision, Project administration, Funding acquisition. Feng JIANG: Software, Formal analysis, Investigation, Data curation.

Corresponding author

Correspondence to Guangwei Liu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Liu, G. & Jiang, F. Chinese Pangolin Optimizer: a novel bio-inspired metaheuristic for solving optimization problems. J Supercomput 81, 517 (2025). https://doi.org/10.1007/s11227-025-07004-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07004-4

Keywords