Skip to main content

Advertisement

Log in

An extensive bibliometric analysis of artificial intelligence techniques from 2013 to 2023

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Between 2013 and 2023, the scientific literature on artificial intelligence grew at an exponential rate. The subject appears to be gaining even greater popularity across a wide range of fields. Although interest in the area is now at its peak, there is a scarcity of comprehensive bibliometric study. As a result, a new perspective on the constantly changing accomplishments, contributions, and research trends is necessary. This study employed Scopus database data to investigate 11,897 AI-related papers produced between 2013 and 2023, as well as VOSviewer software to depict research trends utilizing co-citation and citation networks. The analysis found a consistent increase in AI-related papers from 2013 to 2023, with substantial increases in areas such as generative AI, explainable AI, reinforcement learning, and optimization approaches, showing their growing relevance in improving technology and tackling challenging real-world challenges. The visualized research patterns also highlight the major institutions, significant partnerships, and crucial authors in AI research, providing a more complete picture of worldwide research activities. The categorization in this study divides artificial intelligence research into five major areas: algorithmic methods, advanced machine learning techniques, data-driven automation technologies, and advanced AI methodology. Academia and industry must acknowledge these findings, which highlight the importance of ongoing research, collaboration, and advancement in artificial intelligence applications across sectors such as healthcare, finance, and manufacturing in order to foster innovation, improve decision-making, and address ethical concerns. It also provides significant insights for policymakers, educators, and business leaders, guiding the formulation of AI policies that foster responsible innovation, improve regulatory frameworks, and ensure fair access to AI developments and proposes rules that promote the ethical use of AI in content production, emphasizing transparency and equity in AI decision-making processes, thereby ensuring technical advancement and societal welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Gill SS, Xu M, Ottaviani C, Patros P, Bahsoon R, Shaghaghi A, Uhlig S (2022) AI for next generation computing: emerging trends and future directions. Internet Things 19:100514

    Article  Google Scholar 

  2. Gao H, Ding X (2022) The research landscape on the artificial intelligence: a bibliometric analysis of recent 20 years. Multimed Tools Appl 81(9):12973–13001

    Article  MATH  Google Scholar 

  3. Campbell M, Hoane AJ Jr, Hsu FH (2002) Deep blue. Artif Intell 134(1–2):57–83

    Article  MATH  Google Scholar 

  4. Zhai X, Chu X, Chai CS, Jong MSY, Istenic A, Spector M, Li Y (2021) A review of artificial intelligence (AI) in education from 2010 to 2020. Complexity 2021:1–18

    Article  Google Scholar 

  5. Van Wynsberghe A (2021) Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 1(3):213–218

    Article  MATH  Google Scholar 

  6. Shao Z, Zhao R, Yuan S, Ding M, Wang Y (2022) Tracing the evolution of AI in the past decade and forecasting the emerging trends. Expert Syst Appl 209:118221

    Article  Google Scholar 

  7. Dwivedi YK, Hughes L, Ismagilova E, Aarts G, Coombs C, Crick T, Williams MD (2021) Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int J Inf Manag 57:101994

    Article  Google Scholar 

  8. Jha SK, Bilalovic J, Jha A, Patel N, Zhang H (2017) Renewable energy: present research and future scope of artificial intelligence. Renew Sustain Energy Rev 77:297–317

    Article  MATH  Google Scholar 

  9. Mellit A, Kalogirou SA, Hontoria L, Shaari S (2009) Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew Sustain Energy Rev 13(2):406–419

    Article  MATH  Google Scholar 

  10. Lee EJ, Kim YH, Kim N, Kang DW (2017) Deep into the brain: artificial intelligence in stroke imaging. J Stroke 19(3):277

    Article  MATH  Google Scholar 

  11. Baskin II, Madzhidov TI, Antipin IS, Varnek AA (2017) Artificial intelligence in synthetic chemistry: achievements and prospects. Russ Chem Rev 86(11):1127

    Article  Google Scholar 

  12. Wakchaure M, Patle BK, Mahindrakar AK (2023) Application of AI techniques and robotics in agriculture: a review. Artif Intell Life Sci 3:100057

    MATH  Google Scholar 

  13. Chinchanachokchai S, Thontirawong P, Chinchanachokchai P (2021) A tale of two recommender systems: the moderating role of consumer expertise on artificial intelligence based product recommendations. J Retail Consum Serv 61:102528

    Article  Google Scholar 

  14. Io HN, Lee CB (2019) Understanding the adoption of chatbot: a case study of Siri. In: Advances in Information and Communication Networks: Proceedings of the 2018 Future of Information and Communication Conference (FICC), vol 1. Springer, pp 632–643

  15. Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Kandarpa K (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The academy workshop. Radiology 291(3):781–791

    Article  Google Scholar 

  16. Mikhaylov SJ, Esteve M, Campion A (2018) Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philos Trans R Soc A Math Phys Eng Sci 376(2128):20170357

    Article  MATH  Google Scholar 

  17. Majid I, Lakshmi YV (2022) An analysis of artificial intelligence initiatives and programmes in India. In: Convergence of Deep Learning and Artificial Intelligence in Internet of Things. CRC Press, pp 281–292

  18. Singh B, Singh M, Devi R (2024) Artificial intelligence in medical imaging for developing countries: challenges and opportunities. Concepts of artificial intelligence and its application in modern healthcare systems. CRC Press, Boca Raton, pp 19–41

    MATH  Google Scholar 

  19. Wu F, Lu C, Zhu M, Chen H, Zhu J, Yu K, Pan Y (2020) Towards a new generation of artificial intelligence in China. Nat Mach Intell 2(6):312–316

    Article  MATH  Google Scholar 

  20. Park W, Kwon H (2024) Implementing artificial intelligence education for middle school technology education in Republic of Korea. Int J Technol Des Educ 34(1):109–135

    Article  MATH  Google Scholar 

  21. Liu J, Kong X, Xia F, Bai X, Wang L, Qing Q, Lee I (2018) Artificial intelligence in the 21st century. IEEE Access 6:34403–34421

    Article  Google Scholar 

  22. Gao F, Jia X, Zhao Z, Chen CC, Xu F, Geng Z, Song X (2021) Bibliometric analysis on tendency and topics of artificial intelligence over last decade. Microsyst Technol 27:1545–1557

    Article  MATH  Google Scholar 

  23. De la Vega Hernández IM, Urdaneta AS, Carayannis E (2023) Global bibliometric mapping of the frontier of knowledge in the field of artificial intelligence for the period 1990–2019. Artif Intell Rev 56(2):1699–1729

    Article  MATH  Google Scholar 

  24. Song P, Wang X (2020) A bibliometric analysis of worldwide educational artificial intelligence research development in recent twenty years. Asia Pac Educ Rev 21(3):473–486

    Article  MATH  Google Scholar 

  25. Pessin VZ, Yamane LH, Siman RR (2022) Smart bibliometrics: an integrated method of science mapping and bibliometric analysis. Scientometrics 127(6):3695–3718

    Article  MATH  Google Scholar 

  26. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res 133:285–296

    Article  Google Scholar 

  27. Souza NLB, Lima DA (2024) Systematic literature review on the application of controllers based on cellular automata in robotic tasks. Rev Inform Teór Apl 31(2):120–137

    Article  MATH  Google Scholar 

  28. Watson C, Cooper N, Palacio DN, Moran K, Poshyvanyk D (2022) A systematic literature review on the use of deep learning in software engineering research. ACM Trans Softw Eng Methodol (TOSEM) 31(2):1–58

    Article  Google Scholar 

  29. Laato S, Tiainen M, Najmul Islam AKM, Mäntymäki M (2022) How to explain AI systems to end users: a systematic literature review and research agenda. Internet Res 32(7):1–31

    Article  Google Scholar 

  30. Madan R, Ashok M (2023) AI adoption and diffusion in public administration: a systematic literature review and future research agenda. Gov Inf Q 40(1):101774

    Article  MATH  Google Scholar 

  31. Ding X, Yang Z (2022) Knowledge mapping of platform research: a visual analysis using VOSviewer and CiteSpace. Electron Commer Res 22:1–23

    Article  MATH  Google Scholar 

  32. Singh VK, Singh P, Karmakar M, Leta J, Mayr P (2021) The journal coverage of web of science, scopus and dimensions: a comparative analysis. Scientometrics 126:5113–5142

    Article  MATH  Google Scholar 

  33. Su M, Peng H, Li S (2021) A visualized bibliometric analysis of mapping research trends of machine learning in engineering (MLE). Expert Syst Appl 186:115728

    Article  Google Scholar 

  34. Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Zhang J (2021) Artificial intelligence: a powerful paradigm for scientific research. Innovation 2(4):100179

    MATH  Google Scholar 

  35. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics. PMLR, pp 1273–1282

  36. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  MATH  Google Scholar 

  37. Buchanan BG, Feigenbaum EA (1978) DENDRAL and Meta-DENDRAL: their applications dimension. Artif Intell 11(1–2):5–24

    Article  MATH  Google Scholar 

  38. Castelvecchi D (2016) Can we open the black box of AI? Nat News 538(7623):20

    Article  Google Scholar 

  39. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  40. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  MATH  Google Scholar 

  41. Soni N, Sharma EK, Singh N, Kapoor A (2019) Impact of artificial intelligence on businesses: from research, innovation, market deployment to future shifts in business models. arXiv preprint arXiv:1905.02092

  42. Xia B, Wang X, Yamasaki T, Aizawa K, Seshime H (2019) Deep neural network-based click-through rate prediction using multimodal features of online banners. In: 2019 IEEE 5th International Conference on Multimedia Big Data (BigMM). IEEE, pp 162–170

  43. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, and Polosukhin I (2017) Attention is all you need. In: Advances in Neural Information Processing Systems, vol 30

  44. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Amodei D (2020) Language models are few-shot learners. Adv Neural Inf Process Syst 33:1877–1901

    Google Scholar 

  45. McCarthy J, Minsky ML, Rochester N, Shannon CE (2006) A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Mag 27(4):12–12

    Google Scholar 

  46. Simon H (1956) The logic theory machine–a complex information processing system. IEEE Trans Inf Theory 2(3):61–79

    Article  MATH  Google Scholar 

  47. Weizenbaum J (1966) ELIZA-a computer program for the study of natural language communication between man and machine. Commun ACM 9(1):36–45

    Article  MathSciNet  MATH  Google Scholar 

  48. Shortliffe EH, Buchanan BG (1990) A model of inexact reasoning in medicine. In: Readings in Uncertain Reasoning, pp 259–275

  49. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Hassabis D (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  MATH  Google Scholar 

  50. Tan Z, Dai N, Su Y, Zhang R, Li Y, Wu D, Li S (2021) Human-machine interaction in intelligent and connected vehicles: a review of status quo, issues, and opportunities. IEEE Trans Intell Transp Syst 23(9):13954–13975

    Article  MATH  Google Scholar 

  51. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multitask learners. OpenAI Blog 1(8):9

    Google Scholar 

  52. Parkes DC, Wellman MP (2015) Economic reasoning and artificial intelligence. Science 349(6245):267–272

    Article  MathSciNet  MATH  Google Scholar 

  53. Javaid M, Haleem A, Khan IH, Suman R (2023) Understanding the potential applications of artificial intelligence in agriculture sector. Adv Agrochem 2(1):15–30

    Article  MATH  Google Scholar 

  54. Kim SW, Kong JH, Lee SW, Lee S (2022) Recent advances of artificial intelligence in manufacturing industrial sectors: a review. Int J Precis Eng Manuf 23:1–19

    Article  MATH  Google Scholar 

  55. Mühlroth C, Grottke M (2020) Artificial intelligence in innovation: how to spot emerging trends and technologies. IEEE Trans Eng Manag 69(2):493–510

    Article  MATH  Google Scholar 

  56. Desislavov R, Martínez-Plumed F, Hernández-Orallo J (2023) Trends in AI inference energy consumption: beyond the performance-vs-parameter laws of deep learning. Sustain Comput Inform Syst 38:100857

    MATH  Google Scholar 

  57. Wani AK, Rahayu F, Ben Amor I, Quadir M, Murianingrum M, Parnidi P, Latifah E (2024) Environmental resilience through artificial intelligence: innovations in monitoring and management. Environ Sci Pollut Res 31:1–17

    Article  Google Scholar 

  58. Sarker IH, Furhad MH, Nowrozy R (2021) Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Comput Sci 2(3):173

    Article  Google Scholar 

  59. Borenstein J, Howard A (2021) Emerging challenges in AI and the need for AI ethics education. AI Ethics 1:61–65

    Article  MATH  Google Scholar 

  60. Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. Nat Med 28(1):31–38

    Article  MATH  Google Scholar 

  61. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2021) A survey on bias and fairness in machine learning. ACM Comput Surv (CSUR) 54(6):1–35

    Article  MATH  Google Scholar 

  62. Jin X, Liu C, Xu T, Su L, Zhang X (2020) Artificial intelligence biosensors: challenges and prospects. Biosens Bioelectron 165:112412

    Article  MATH  Google Scholar 

  63. Liang W, Tadesse GA, Ho D, Fei-Fei L, Zaharia M, Zhang C, Zou J (2022) Advances, challenges and opportunities in creating data for trustworthy AI. Nat Mach Intell 4(8):669–677

    Article  MATH  Google Scholar 

  64. Jo A (2023) The promise and peril of generative AI. Nature 614(1):214–216

    MATH  Google Scholar 

  65. Xu F, Uszkoreit H, Du Y, Fan W, Zhao D, Zhu J (2019) Explainable AI: a brief survey on history, research areas, approaches and challenges. In: Natural Language Processing and Chinese Computing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019, Proceedings, Part II 8. Springer, pp 563–574

  66. Baas J, Schotten M, Plume A, Côté G, Karimi R (2020) Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant Sci Stud 1(1):377–386

    Article  Google Scholar 

  67. Srivastava S, Singh S, Dhir S (2020) Culture and International business research: a review and research agenda. Int Bus Rev 29(4):101709

    Article  MATH  Google Scholar 

  68. Martín-Martín A, Thelwall M, Orduna-Malea E, Delgado López-Cózar E (2021) Google scholar, microsoft academic, scopus, dimensions, web of science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics 126(1):871–906

    Article  Google Scholar 

  69. Pranckutė R (2021) Web of science (WoS) and scopus: the titans of bibliographic information in today’s academic world. Publications 9(1):12

    Article  Google Scholar 

  70. Verma R, Sharma S (2022) Scopus: a comprehensive literature review. Int J Prof Dev 11(2):107–110

    MATH  Google Scholar 

  71. Visser M, Van Eck NJ, Waltman L (2021) Large-scale comparison of bibliographic data sources: scopus, web of science, dimensions, crossref, and microsoft academic. Quant Sci Stud 2(1):20–41

    Article  MATH  Google Scholar 

  72. Ortega JL, Delgado-Quirós L (2024) The indexation of retracted literature in seven principal scholarly databases: a coverage comparison of dimensions, OpenAlex, PubMed, Scilit, Scopus, The Lens and Web of Science. Scientometrics 129(7):3769–3785

    Article  MATH  Google Scholar 

  73. Chawla RN, Goyal P (2022) Emerging trends in digital transformation: a bibliometric analysis. Benchmarking Int J 29(4):1069–1112

    Article  MATH  Google Scholar 

  74. Basson I, Blanckenberg JP, Prozesky H (2021) Do open access journal articles experience a citation advantage? Results and methodological reflections of an application of multiple measures to an analysis by WoS subject areas. Scientometrics 126(1):459–484

    Article  Google Scholar 

  75. Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  MATH  Google Scholar 

  76. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

    Article  Google Scholar 

  77. Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J (2016) LSTM: a search space odyssey. IEEE Trans Neural Netw Learn Syst 28(10):2222–2232

    Article  MathSciNet  Google Scholar 

  78. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2012) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  MATH  Google Scholar 

  79. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  MATH  Google Scholar 

  80. Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48

    Article  Google Scholar 

  81. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57

    Article  MATH  Google Scholar 

  82. Liu J, Musialski P, Wonka P, Ye J (2012) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–220

    Article  MATH  Google Scholar 

  83. Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ (2016) Deep learning for health informatics. IEEE J Biomed Health Inform 21(1):4–21

    Article  Google Scholar 

  84. Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70–79

    Article  MATH  Google Scholar 

  85. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp 785–794

  86. Ioffe S (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167

  87. Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1135–1144

  88. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 31, no 1

  89. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International Conference on Machine Learning. PMLR, pp 214–223

  90. Schulman J (2015) Trust region policy optimization. arXiv preprint arXiv:1502.05477

  91. Xu K (2015) Show, attend and tell: neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044

  92. Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol 28

  93. Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 30, no 1

  94. Vinyals O, Toshev A, Bengio S, Erhan D (2015) Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3156–3164

  95. Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning. PMLR, pp 1180–1189

  96. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning. PMLR, pp 1126–1135

  97. Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D (2020) Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, no 07, pp 12993–13000

  98. Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A (2016) The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS &P). IEEE, pp 372–387

  99. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L (2016) Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp 308–318

  100. Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning. PMLR, pp 10347–10357

  101. Long M, Cao Y, Wang J, Jordan M (2015) Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning. PMLR, pp 97–105

  102. Hutto C, Gilbert E (2014) Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the International AAAI Conference on Web and Social Media, vol 8, no 1, pp 216–225

  103. Yan S, Xiong Y, Lin D (2018) Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32, no 1

  104. Pandey PK, Bajpai N (2022) Mapping the research pattern of cause-related marketing: a bibliometric analysis of publications during 2000–2020. J Nonprofit Public Sect Mark 36:1–28

    MATH  Google Scholar 

  105. Kumar R, Khan AA, Kumar J, Golilarz NA, Zhang S, Ting Y, Wang W (2021) Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging. IEEE Sens J 21(14):16301–16314

    Article  Google Scholar 

  106. Lu S, Ding Y, Liu M, Yin Z, Yin L, Zheng W (2023) Multiscale feature extraction and fusion of image and text in VQA. Int J Comput Intell Syst 16(1):54

    Article  MATH  Google Scholar 

  107. Kumar G, Jain S, Singh UP (2021) Stock market forecasting using computational intelligence: a survey. Arch Comput Methods Eng 28(3):1069–1101

    Article  MathSciNet  MATH  Google Scholar 

  108. Zheng XL, Zhu MY, Li QB, Chen CC, Tan YC (2019) FinBrain: when finance meets AI 2.0. Front Inf Technol Electron Eng 20(7):914–924

    Article  Google Scholar 

  109. Burés J, Larrosa I (2023) Organic reaction mechanism classification using machine learning. Nature 613(7945):689–695

    Article  MATH  Google Scholar 

  110. Liu C, Wang Y, Yang C, Gui W (2024) Multimodal data-driven reinforcement learning for operational decision-making in industrial processes. IEEE/CAA J Autom Sin 11(1):252–254

    Article  MATH  Google Scholar 

  111. Yang L, Sun Q, Zhang N, Li Y (2022) Indirect multi-energy transactions of energy internet with deep reinforcement learning approach. IEEE Trans Power Syst 37(5):4067–4077

    Article  MATH  Google Scholar 

  112. Alrahis L, Knechtel J, Sinanoglu O (2023) Graph neural networks: a powerful and versatile tool for advancing design, reliability, and security of ICs. In: Proceedings of the 28th Asia and South Pacific Design Automation Conference, pp 83–90

  113. Cheng D, Wang X, Zhang Y, Zhang L (2020) Graph neural network for fraud detection via spatial-temporal attention. IEEE Trans Knowl Data Eng 34(8):3800–3813

    Article  MATH  Google Scholar 

  114. Andronie M, Lăzăroiu G, Iatagan M, Hurloiu I, Ștefănescu R, Dijmărescu A, Dijmărescu I (2023) Big data management algorithms, deep learning-based object detection technologies, and geospatial simulation and sensor fusion tools in the internet of robotic things. ISPRS Int J Geo Inf 12(2):35

    Article  Google Scholar 

  115. Raban DR, Gordon A (2020) The evolution of data science and big data research: a bibliometric analysis. Scientometrics 122(3):1563–1581

    Article  MATH  Google Scholar 

  116. Gandhi A, Adhvaryu K, Poria S, Cambria E, Hussain A (2023) Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Inf Fusion 91:424–444

    Article  Google Scholar 

  117. Shukla AK, Muhuri PK, Abraham A (2020) A bibliometric analysis and cutting-edge overview on fuzzy techniques in big data. Eng Appl Artif Intell 92:103625

    Article  MATH  Google Scholar 

  118. Cai J, Liang W, Li X, Li K, Gui Z, Khan MK (2023) GTxChain: a secure IoT smart blockchain architecture based on graph neural network. IEEE Internet Things J 10:21502

    Article  Google Scholar 

  119. Ikotun AM, Ezugwu AE, Abualigah L, Abuhaija B, Heming J (2023) K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf Sci 622:178–210

    Article  Google Scholar 

  120. Ouyang M, Gao F, Wang Y, Zhang S, Li P, Ren J (2023) Computer vision-aided reconfigurable intelligent surface-based beam tracking: prototyping and experimental results. IEEE Trans Wirel Commun 22:8681

    Article  Google Scholar 

  121. Li Y, Xu Z, Wang X, Wang X (2020) A bibliometric analysis on deep learning during 2007–2019. Int J Mach Learn Cybern 11:2807–2826

    Article  MATH  Google Scholar 

  122. Asudani DS, Nagwani NK, Singh P (2023) Impact of word embedding models on text analytics in deep learning environment: a review. Artif Intell Rev 56(9):10345–10425

    Article  MATH  Google Scholar 

  123. Shamman AH, Hadi AA, Ramul AR, Zahra MMA, Gheni HM (2023) The artificial intelligence (AI) role for tackling against COVID-19 pandemic. Mater Today Proc 80:3663–3667

    Article  Google Scholar 

  124. Xia M, Kheterpal MK, Wong SC, Park C, Ratliff W, Carin L, Henao R (2022) Lesion identification and malignancy prediction from clinical dermatological images. Sci Rep 12(1):15836

    Article  Google Scholar 

  125. Gibert D, Mateu C, Planes J (2020) The rise of machine learning for detection and classification of malware: research developments, trends and challenges. J Netw Comput Appl 153:102526

    Article  MATH  Google Scholar 

  126. Liu H, Liu J, Cui L, Teng Z, Duan N, Zhou M, Zhang Y (2023) Logiqa 2.0-an improved dataset for logical reasoning in natural language understanding. IEEE/ACM Trans Audio Speech Lang Process 31:2947

    Article  MATH  Google Scholar 

  127. Arachchige PCM, Bertok P, Khalil I, Liu D, Camtepe S, Atiquzzaman M (2020) A trustworthy privacy preserving framework for machine learning in industrial IoT systems. IEEE Trans Ind Inf 16(9):6092–6102

    Article  MATH  Google Scholar 

  128. Huang YP, Xia Y, Yang L, Wei J, Yang YI, Gao YQ (2022) SPONGE: a GPU-accelerated molecular dynamics package with enhanced sampling and AI-driven algorithms. Chin J Chem 40(1):160–168

    Article  MATH  Google Scholar 

  129. Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25(1):44–56

    Article  MATH  Google Scholar 

  130. Wu W, Huang T, Gong K (2020) Ethical principles and governance technology development of AI in China. Engineering 6(3):302–309

    Article  MATH  Google Scholar 

  131. Bhutoria A (2022) Personalized education and artificial intelligence in the United States, China, and India: a systematic review using a human-in-the-loop model. Comput Educ Artif Intell 3:100068

    Article  MATH  Google Scholar 

  132. Yigitcanlar T, Corchado JM, Mehmood R, Li RYM, Mossberger K, Desouza K (2021) Responsible urban innovation with local government artificial intelligence (AI): a conceptual framework and research agenda. J Open Innov Technol Mark Complex 7(1):71

    Article  Google Scholar 

  133. Chawla Y, Shimpo F, Sokołowski MM (2022) Artificial intelligence and information management in the energy transition of India: lessons from the global IT heart. Digit Policy Regul Gov 24(1):17–29

    Google Scholar 

  134. Misra R, Kesswani N, Rajarajan M, Veeravalli B, Brigui I, Patel A, Singh TN (eds) (2023) Advances in data science and artificial intelligence: ICDSAI 2022, IIT Patna, India, April 23–24. Springer, Cham, p 524

    MATH  Google Scholar 

  135. Zhang W, Gao B, Tang J, Yao P, Yu S, Chang MF, Wu H (2020) Neuro-inspired computing chips. Nat Electron 3(7):371–382

    Article  Google Scholar 

  136. Wakunuma K, Jiya T, Aliyu S (2020) Socio-ethical implications of using AI in accelerating SDG3 in least developed countries. J Responsib Technol 4:100006

    Article  Google Scholar 

  137. Mungoli N (2023) Leveraging AI and technology to address the challenges of underdeveloped countries. J Electr Electron Eng 2(3):211–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed in this work.

Corresponding author

Correspondence to Aditi Bajpai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, A., Yadav, S. & Nagwani, N.K. An extensive bibliometric analysis of artificial intelligence techniques from 2013 to 2023. J Supercomput 81, 540 (2025). https://doi.org/10.1007/s11227-025-07021-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07021-3

Keywords