Skip to main content

Advertisement

Log in

Hyperspectral image destriping with spectral tensor sparse approximation

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Numerous photodetectors in hyperspectral imagers with different spectral reflectance responses to pixels result in the obtained hyperspectral image (HSI) being prone to producing stripes distortions along-track direction. Many variation-based methods show sufficient destriping performance. However, these destriping algorithms have limitations in removing multidirectional stripes and lack robustness. Therefore, the HSI destriping algorithm with spectral tensor sparse approximation is proposed in this article, which integrates comprehensively prior information from HSI and directional structured stripes. Specifically, for image component, we apply the unidirectional spectral total variation regularization to enhance the spectral continuity of image. Moreover, for stripes component, we introduce group sparsity regularization to maintain the special direction and spatial linear characteristics of vertical and horizontal stripes. Subsequently, the split Bregman is designed to solve the proposed optimization model. Further, the restored image is obtained by the inverse matrix of the diagonal matrix after singular value decomposition on the block circulant matrix. Finally, the experimental results in simulated and real datasets validate the superiority and robustness of the proposed method, which is superior to other state-of-the-art algorithms in both visual and quantitative indicators. Especially, the spectral curves of the recovery HSI by the proposed algorithm are much smoother as the stripes in the scenes become gradually denser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Tong Q, Xue Y, Zhang L (2013) Progress in hyperspectral remote sensing science and technology in China over the past three decades. IEEE J Sel Top Appl Earth Observ Remote Sens 7(1):70–91

    Article  MATH  Google Scholar 

  2. Rogass C, Mielke C, Scheffler D et al (2014) Reduction of uncorrelated striping noise—Applications for hyperspectral pushbroom acquisitions. Remote Sens 6(11):11082–11106

    Article  MATH  Google Scholar 

  3. Zhao J, Zhong Y, Shu H et al (2016) High-resolution image classification integrating spectral-spatial-location cues by conditional random fields. IEEE Trans Image Proc 25(9):4033–4045

    Article  MathSciNet  MATH  Google Scholar 

  4. Han Z, Yang J, Gao L et al (2024) Dual-branch subpixel-guided network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 62(1):1–13

    MATH  Google Scholar 

  5. Scheffler D, Karrasch P (2013) Preprocessing of hyperspectral images: a comparative study of destriping algorithms for EO1-hyperion[C]//Image and Signal Processing for Remote Sensing XIX. SPIE 8892:120–134

    MATH  Google Scholar 

  6. Rasti B, Scheunders P, Ghamisi P et al (2018) Noise reduction in hyperspectral imagery: Overview and application. Remote Sensing 10(3):482

    Article  MATH  Google Scholar 

  7. Liu N, Li W, Wang Y et al (2023) A survey on hyperspectral image restoration: From the view of low-rank tensor approximation. Sci China Inf Sci 66(4):140302

    Article  MathSciNet  Google Scholar 

  8. Goetz AFH (2009) Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens Environ 113:S5–S16

    Article  MATH  Google Scholar 

  9. Chang Y, Yan L, Wu T et al (2016) Remote sensing image stripe noise removal: From image decomposition perspective. IEEE Trans Geosci Remote Sens 54(12):7018–7031

    Article  Google Scholar 

  10. Chen Y, Cao X, Zhao Q et al (2017) Denoising hyperspectral image with non-iid noise structure. IEEE Transa Cyb 48(3):1054–1066

    Article  MATH  Google Scholar 

  11. Wang M, Hong D, Han Z et al (2023) Tensor decompositions for hyperspectral data processing in remote sensing: A comprehensive review. IEEE Geosci Remote Sens Magaz 11(1):26–72

    Article  MATH  Google Scholar 

  12. Bouali M, Ladjal S (2011) Toward optimal destriping of MODIS data using a unidirectional variational model. IEEE Trans Geosci Remote Sens 49(8):2924–2935

    Article  MATH  Google Scholar 

  13. Chang Y, Yan L, Fang H et al (2013) Simultaneous destriping and denoising for remote sensing images with unidirectional total variation and sparse representation. IEEE Geosci Remote Sens Lett 11(6):1051–1055

    Article  MATH  Google Scholar 

  14. Chang Y, Yan L, Fang H et al (2015) Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Trans Image Proc 24(6):1852–1866

    Article  MathSciNet  MATH  Google Scholar 

  15. Aggarwal HK, Majumdar A (2016) Hyperspectral image denoising using spatio-spectral total variation. IEEE Geosci Remote Sens Lett 13(3):442–446

    MATH  Google Scholar 

  16. Xu G, Deng L, Wang H et al (2023) CPAD: Component Pixel-Aware Multispectral Image Destriping. IEEE Transa Aerospace Electr Syst. https://doi.org/10.1109/TAES.2023.3285195

    Article  Google Scholar 

  17. Cao W, Chang Y, Han G et al (2018) Destriping remote sensing image via low-rank approximation and nonlocal total variation. IEEE Geosci Remote Sens Lett 15(6):848–852

    Article  MATH  Google Scholar 

  18. Lu X, Wang Y, Yuan Y (2013) Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans Geosci Remote Sens 51(7):4009–4018

    Article  MATH  Google Scholar 

  19. Liu N, Li W, Tao R et al (2022) Multigraph-based low-rank tensor approximation for hyperspectral image restoration. IEEE Trans Geosci Remote Sens 60:1–14

    MATH  Google Scholar 

  20. Wang M, Wang Q, Chanussot J et al (2020) Hyperspectral image mixed noise removal based on multidirectional low-rank modeling and spatial–spectral total variation. IEEE Trans Geosci Remote Sens 59(1):488–507

    Article  MATH  Google Scholar 

  21. Liu P, Liu L (2023) Hyperspectral Image Destriping and Denoising with Spectral Low Rank and Tensor Nuclear Norm[C]//IGARSS 2023–2023 International Geoscience and Remote Sensing Symposium. IEEE, Pasadena, CA, USA

    MATH  Google Scholar 

  22. Cai J, He W, Zhang H (2022) Anisotropic spatial–spectral total variation regularized double low-rank approximation for HSI denoising and destriping. IEEE Trans Geosci Remote Sens 60:1–19

    MATH  Google Scholar 

  23. Dou HX, Huang TZ, Deng LJ et al (2018) Directional ℓ 0 Sparse Modeling for Image Stripe Noise Removal. Remote Sensing 10(3):361

    Article  MATH  Google Scholar 

  24. Yang JH, Zhao XL, Ma TH et al (2020) Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J Comput Appl Math 363:124–144

    Article  MathSciNet  MATH  Google Scholar 

  25. Kong X, Zhao Y, Xue J et al (2020) Global and local tensor sparse approximation models for hyperspectral image destriping. Remote Sens 12(4):704

    Article  MATH  Google Scholar 

  26. Naganuma K, Ono S (2022) A general destriping framework for remote sensing images using flatness constraint. IEEE Trans Geosci Remote Sens 60:1–16

    Article  MATH  Google Scholar 

  27. Wang JL, Huang TZ, Ma TH et al (2019) A sheared low-rank model for oblique stripe removal. Appl Math Comput 360:167–180

    MathSciNet  MATH  Google Scholar 

  28. Chen Y, Huang TZ, Zhao XL (2018) Destriping of multispectral remote sensing image using low-rank tensor decomposition. IEEE J Sel Top Appl Earth Obser Remote Sens 11(12):4950–4967

    Article  MATH  Google Scholar 

  29. Liu N, Li W, Tao R et al (2019) Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery. IEEE Trans Geosci Remote Sens 57(12):10310–10321

    Article  MATH  Google Scholar 

  30. Wang JL, Huang TZ, Zhao XL et al (2019) Reweighted block sparsity regularization for remote sensing images destriping. IEEE J Sel Top Appl Earth Obser Remote Sens 12(12):4951–4963

    Article  MATH  Google Scholar 

  31. Shanthini K S, George S N, George S, et al. Stripe Removal from Hyperspectral Food Images acquired by Handheld Camera using ℓ 2, 1 Norm Minimization and SSTV Regularization[C]. In: IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). IEEE, 2023: 184–189.

  32. Pan E, Ma Y, Mei X et al (2023) Hyperspectral image destriping and denoising from a task decomposition view. Pattern Recogn 144:109832

    Article  MATH  Google Scholar 

  33. Chang Y, Chen M, Yan L et al (2019) Toward universal stripe removal via wavelet-based deep convolutional neural network. IEEE Trans Geosci Remote Sens 58(4):2880–2897

    Article  MATH  Google Scholar 

  34. Wang C, Xu M, Jiang Y et al (2021) Hyperspectral image stripe removal network with cross-frequency feature interaction. IEEE Trans Geosci Remote Sens 60:1–15

    MATH  Google Scholar 

  35. He Z, Cao Y, Dong Y et al (2018) Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: A deep-learning approach. Appl Opt 57(18):D155–D164

    Article  MATH  Google Scholar 

  36. Guan J, Lai R, Li H et al (2022) DnRCNN: deep recurrent convolutional neural network for HSI destriping. IEEE Transa Neural Netw Learn Syst 34(7):3255–3268

    Article  MATH  Google Scholar 

  37. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1–4):259–268

    Article  MathSciNet  MATH  Google Scholar 

  38. Deng W, Yin W, Zhang Y (2013) Group sparse optimization by alternating direction method[C]//Wavelets and Sparsity XV. SPIE 8858:242–256

    MATH  Google Scholar 

  39. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  40. Acito N, Diani M, Corsini G (2010) Subspace-based striping noise reduction in hyperspectral images. IEEE Trans Geosci Remote Sens 49(4):1325–1342

    Article  MATH  Google Scholar 

  41. Chen ZY, Zhao XL, Lin J et al (2022) Nonlocal-based tensor-average-rank minimization and tensor transform-sparsity for 3D image denoising. Knowl-Based Syst 244:108590

    Article  MATH  Google Scholar 

  42. He W, Zhang H, Zhang L et al (2015) Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans Geosci Remote Sens 54(1):178–188

    Article  MATH  Google Scholar 

  43. Rasti B, Ghamisi P, Benediktsson JA (2019) Hyperspectral mixed Gaussian and sparse noise reduction. IEEE Geosci Remote Sens Lett 17(3):474–478

    Article  MATH  Google Scholar 

  44. Hu T, Liu N, Li W, et al. (2021) Destriping hyperspectral Imagery by adaptive anisotropic total variation and truncated nuclear norm[C]. 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE

  45. Gogna A, Shukla A, Agarwal H K, et al. (2014) Split Bregman algorithms for sparse/joint-sparse and low-rank signal recovery: Application in compressive hyperspectral imaging[C]. In: IEEE International Conference on Image Processing (ICIP). IEEE

  46. Dataset website: http://hipag.whu.edu.cn/resourcesdownload.html

  47. Lin J, Huang TZ, Zhao XL et al (2021) A novel non-convex low-rank tensor approximation model for hyperspectral image restoration. Appl Math Comput 408:126342

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant number [No. 42075129]).

Author information

Authors and Affiliations

Authors

Contributions

Hong Liu wrote the main manuscript text. All authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Jie Ma.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Ma, J., Huang, Z. et al. Hyperspectral image destriping with spectral tensor sparse approximation. J Supercomput 81, 549 (2025). https://doi.org/10.1007/s11227-025-07037-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07037-9

Keywords