Skip to main content

Advertisement

Log in

Surgical localization and automatic electrode implantation system for DBS based on gradient descent electric field stereotaxis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

One major challenge in brain electrode implantation surgery such as deep brain stimulation (DBS) surgery is the absence of real-time 3D imaging during the procedure. To overcome this limitation, a DBS surgical localization and automatic navigation system based on gradient descent electric field stereotaxis (GDEFS) was developed, offering real-time 3D visualization and automated navigation to the target. The hardware system injects current into the target area via electrodes integrated into the DBS surgical instrument, generating a simple electric field within the body. Electric potential data collected via an electric field framework are processed to locate the electrode. Simulated surgical navigation experiments demonstrate a localization spatial error of less than 2 mm and an angular error of less than 1°. This work demonstrates the practical implementation of electric field stereotaxis, transforming its theoretical basis into a fully functional system for real-time 3D surgical navigation in DBS procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data and codes that support the findings of this study are available upon reasonable request from the authors.

References

  1. Gielen FLH, Molnar GC (2012) Basic principles of deep brain stimulation. In: Denys D, Feenstra M, Schuurman R (eds) Deep brain stimulation. Springer, Berlin, pp 1–10

    Google Scholar 

  2. Xiao Y, Lau JC, Hemachandra D et al (2021) Image guidance in deep brain stimulation surgery to treat parkinson’s disease: a comprehensive review. IEEE Trans Biomed Eng 68:1024–1033. https://doi.org/10.1109/TBME.2020.3006765

    Article  Google Scholar 

  3. Lozano AM, Lipsman N, Bergman H et al (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15:148–160. https://doi.org/10.1038/s41582-018-0128-2

    Article  MATH  Google Scholar 

  4. Krauss JK, Lipsman N, Aziz T et al (2021) Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 17:75–87. https://doi.org/10.1038/s41582-020-00426-z

    Article  MATH  Google Scholar 

  5. Iacono MI, Atefi SR, Mainardi L et al (2019) A study on the feasibility of the deep brain stimulation (DBS) Electrode localization based on scalp electric potential recordings. Front Physiol 9:1788. https://doi.org/10.3389/fphys.2018.01788

    Article  Google Scholar 

  6. O’Gorman RL, Jarosz JM, Samuel M et al (2009) CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation. Stereotact Funct Neurosurg 87:205–210

    Article  MATH  Google Scholar 

  7. Geevarghese R, O’Gorman Tuura R, Lumsden DE et al (2016) Registration accuracy of CT/MRI fusion for localisation of deep brain stimulation electrode position: an imaging study and systematic review. Stereotact Funct Neurosurg 94:159–163

    Article  Google Scholar 

  8. Sobstyl M, Aleksandrowicz M, Ząbek M, Pasterski T (2019) Hemorrhagic complications seen on immediate intraprocedural stereotactic computed tomography imaging during deep brain stimulation implantation. J Neurol Sci 400:97–103

    Article  MATH  Google Scholar 

  9. Uda T (2023) Neuroimaging of brain tumor surgery and epilepsy. MDPI 13:1701

    MATH  Google Scholar 

  10. Meglio M (2023) Newly announced VISION study aims to improve Parkinson DBS localization through SIS brain visualization software. Neurol Live NA-NA

  11. Wang JB (2023) Mapping the whole-brain response to noninvasive neuromodulation: from rodents to humans. Stanford University, Redwood City

    Google Scholar 

  12. Li A, Han J, Zhao Y et al (2023) Realistic ultrasound synthesis based on diagnostic CT to facilitate ultrasound-guided robotic spine surgery. IEEE Trans Med Robot Bionics 5:879–889

    Article  Google Scholar 

  13. Gala KB, Chandra D, Shetty NS et al (2023) imaging recommendations for image-guided biopsy in oncology. Indian J Med Paediatr Oncol 44:334–342

    Article  Google Scholar 

  14. Pérez FG, López AJV, Alba MG et al (2024) Transcortical transcatheter ultrasound-assisted technique for deep-seated brain tumors. Technical note. J Ultrasound 27:191–197

    Article  MATH  Google Scholar 

  15. Fischer C, Boehler Q, Nelson BJ (2022) Using magnetic fields to navigate and simultaneously localize catheters in endoluminal environments. IEEE Robot Autom Lett 7:7217–7223

    Article  Google Scholar 

  16. Ciuti G, Menciassi A, Dario P (2011) Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng 4:59–72

    Article  Google Scholar 

  17. Lim DH, Kim SY, Na YC, Cho JM (2023) Navigation Guided Biopsy Is as Effective as Frame-Based Stereotactic Biopsy. J Pers Med 13:708

    Article  MATH  Google Scholar 

  18. Jensdottir M, Sandvik U, Fagerlund M, Bartek J Jr (2023) Laser interstitial thermal therapy using the Leksell Stereotactic System and a diagnostic MRI suite: how I do it. Acta Neurochir (Wien) 165:549–554

    Article  Google Scholar 

  19. Edwards CA, Rusheen AE, Oh Y et al (2018) A novel re-attachable stereotactic frame for MRI-guided neuronavigation and its validation in a large animal and human cadaver model. J Neural Eng 15:066003

    Article  Google Scholar 

  20. Scheitler KM, Rusheen AE, Yuen J et al (2024) Clinical evaluation of a stereotactic system for single-stage deep brain stimulation surgery under general anesthesia. J Neurosurg 1:1–6

    Google Scholar 

  21. Mirzadeh Z, Chapple K, Lambert M et al (2014) Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery. Mov Disord 29:1788–1795

    Article  MATH  Google Scholar 

  22. Genovese D, Bove F, Rigon L et al (2024) Long-term safety and efficacy of frameless subthalamic deep brain stimulation in Parkinson’s disease. Neurol Sci 45:565–572

    Article  Google Scholar 

  23. Tai C-H, Wu R-M, Lin C-H et al (2010) Deep brain stimulation therapy for Parkinson’s disease using frameless stereotaxy: comparison with frame-based surgery. Eur J Neurol 17:1377–1385

    Article  MATH  Google Scholar 

  24. Piano C, Bove F, Mulas D et al (2021) Frameless stereotaxy in subthalamic deep brain stimulation: 3-year clinical outcome. Neurol Sci 42:259–266

    Article  MATH  Google Scholar 

  25. Brontë-Stewart H, Louie S, Batya S, Henderson JM (2010) Clinical motor outcome of bilateral subthalamic nucleus deep-brain stimulation for Parkinson’s disease using image-guided frameless stereotaxy. Neurosurgery 67:1088–1093

    Article  Google Scholar 

  26. Jiang YD, Soleimani M (2019) Capacitively coupled electrical impedance tomography for brain imaging. IEEE Trans Med Imaging 38:2104–2113. https://doi.org/10.1109/TMI.2019.2895035

    Article  MATH  Google Scholar 

  27. Ke X-Y, Hou W, Huang Q et al (2022) Advances in electrical impedance tomography-based brain imaging. Mil Med Res 9:10. https://doi.org/10.1186/s40779-022-00370-7

    Article  MATH  Google Scholar 

  28. Shi X, Li W, You F et al (2018) High-precision electrical impedance tomography data acquisition system for brain imaging. IEEE Sens J 18:5974–5984

    Article  MATH  Google Scholar 

  29. Fang Y, Yang F, Tan L et al (2024) An electric field stereotaxis method for surgical localization and navigation of solid organs. IEEE Sens J 24:19736–19744. https://doi.org/10.1109/JSEN.2024.3393857

    Article  Google Scholar 

  30. Vagdargi P, Uneri A, Zhang X et al (2023) Real-time 3-D video reconstruction for guidance of transventricular neurosurgery. IEEE Trans Med Robot Bionics 5:669–682. https://doi.org/10.1109/TMRB.2023.3292450

    Article  Google Scholar 

  31. Adler A, Holder D (2021) Electrical impedance tomography: methods, history and applications. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  32. Shi Y, Wu Y, Wang M et al (2023) Intracerebral hemorrhage imaging based on hybrid deep learning with electrical impedance tomography. IEEE Trans Instrum Meas 7:1–12

    MATH  Google Scholar 

  33. Yang L, Li H, Ding J et al (2018) Optimal combination of electrodes and conductive gels for brain electrical impedance tomography. Biomed Eng Online 17:1–22

    Article  MATH  Google Scholar 

  34. Nissinen A, Kaipio JP, Vauhkonen M, Kolehmainen V (2015) Contrast enhancement in EIT imaging of the brain. Physiol Meas 37:1

    Article  MATH  Google Scholar 

  35. Medical Electrical Equipment (2020) IEC International Standard 60601–1

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yuxin Fang performed writing—original draft preparation; Fan Yang and Wei He performed writing—review and editing; Liang Tan, Zhenyou Liu, and Wei Zhang carried out formal analysis and investigation; Xing Li and Pengbo Wang performed material preparation and data collection and analysis, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fan Yang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Yang, F., He, W. et al. Surgical localization and automatic electrode implantation system for DBS based on gradient descent electric field stereotaxis. J Supercomput 81, 539 (2025). https://doi.org/10.1007/s11227-025-07072-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07072-6

Keywords