Skip to main content

Advertisement

Log in

A survey on quantum deep learning

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum deep learning (QDL), which combines the unique strengths of quantum computing and deep learning, is gradually becoming a focal point. It offers new ideas for addressing the many challenges currently faced. In this survey, we review the representative algorithms that have combined quantum computing and deep learning in recent years. Firstly, we categorize the discussion based on data types into three areas: text, image, and multimodal data. We focus on QDL algorithms within these categories and explore their characteristics. Secondly, this paper compares the performance of the QDL model with the traditional model. By comparison, QDL not only demonstrates enhanced feature extraction capabilities but is also able to handle more complex data. In addition, the unique properties of quantum computing, such as quantum superposition and quantum entanglement, can accelerate calculations and improve model performance. These advantages demonstrate its potential efficiency over traditional methods. Finally, a summary and outlook on the prevailing research conditions in QDL have been given. This article integrates current research findings in QDL, providing a clear research background for subsequent researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Computation 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  2. Sutskever I (2014) Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215

  3. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  MATH  Google Scholar 

  4. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32

  5. Team T (2015) Tensorflow: Large-scale machine learning on heterogeneous systems, 2015. URL http://tensorflow. org/. Software available from tensorflow. org

  6. Vaswani A (2017) Attention is all you need. Adv Neural Inf Process Syst 30:1

    MATH  Google Scholar 

  7. Kak SC (1995) Quantum neural computing. Adv Imaging Electron Phys 94:259–313

    Article  MATH  Google Scholar 

  8. Anguita D, Ridella S, Rivieccio F, Zunino R (2003) Quantum optimization for training support vector machines. Neural Netw 16(5–6):763–770

    Article  MATH  Google Scholar 

  9. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):150502

    Article  MathSciNet  MATH  Google Scholar 

  10. Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nature Phys 10(9):631–633

    Article  MATH  Google Scholar 

  11. Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys Rev Lett 113(13):130503

    Article  MATH  Google Scholar 

  12. Li Z, Liu X, Xu N, Du J (2015) Experimental realization of a quantum support vector machine. Phys Rev Lett 114(14):140504

    Article  MATH  Google Scholar 

  13. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028

  14. Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized quantum circuits as machine learning models. Quantum Sci Technol 4(4):043001

    Article  Google Scholar 

  15. Zhang M, Dong L, Zeng Y, Cao N (2022) Improved circuit implementation of the hhl algorithm and its simulations on qiskit. Sci Rep 12(1):13287

    Article  MATH  Google Scholar 

  16. Khot A, Kim T, Akash AR, Kim CH, Moy W (2024) Quantum-inspired machine learning framework using a physics-based ising solver chip. In: 2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS), pp. 1–6. IEEE

  17. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. Ieee

  18. Jozsa R (1999) Searching in grover’s algorithm. arXiv preprint quant-ph/9901021

  19. Zhang M, Dong L, Zeng Y, Cao N (2022) Improved circuit implementation of the hhl algorithm and its simulations on qiskit. Sci Rep 12(1):13287

    Article  MATH  Google Scholar 

  20. Ahmed S (2019) Pattern recognition with quantum support vector machine (qsvm) on near term quantum processors. PhD thesis, Brac University

  21. Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nature Phys 10(9):631–633

    Article  MATH  Google Scholar 

  22. Daley AJ, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P (2022) Practical quantum advantage in quantum simulation. Nature 607(7920):667–676

    Article  MATH  Google Scholar 

  23. Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018) Quantum boltzmann machine. Phys Rev X 8(2):021050

    Google Scholar 

  24. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195–202

    Article  MATH  Google Scholar 

  25. Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized quantum circuits as machine learning models. Quantum Sci Technol 4(4):043001

    Article  Google Scholar 

  26. Gyongyosi L, Imre S (2019) Training optimization for gate-model quantum neural networks. Sci Rep 9(1):12679

    Article  MATH  Google Scholar 

  27. Gyongyosi L, Imre S (2020) Circuit depth reduction for gate-model quantum computers. Sci Rep 10(1):11229

    Article  MATH  Google Scholar 

  28. Gyongyosi L, Imre S (2020) Optimizing high-efficiency quantum memory with quantum machine learning for near-term quantum devices. Sci Rep 10(1):135

    Article  MATH  Google Scholar 

  29. Gyongyosi L, Imre S (2021) Scalable distributed gate-model quantum computers. Sci Rep 11(1):5172

    Article  MATH  Google Scholar 

  30. Gyongyosi L, Imre S (2022) Advances in the quantum internet. Commun ACM 65(8):52–63

    Article  MATH  Google Scholar 

  31. Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett 100(16):160501

    Article  MathSciNet  MATH  Google Scholar 

  32. Wiebe N, Kapoor A, Svore KM (2014) Quantum deep learning. arXiv preprint arXiv:1412.3489

  33. Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nat Phys 15(12):1273–1278

    Article  MATH  Google Scholar 

  34. Liu J, Lim KH, Wood KL, Huang W, Guo C, Huang H-L (2021) Hybrid quantum-classical convolutional neural networks. Sci China Phys, Mech & Astron 64(9):290311

    Article  MATH  Google Scholar 

  35. Zhang P, Niu J, Su Z, Wang B, Ma L, Song D (2018) End-to-end quantum-like language models with application to question answering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32

  36. Zhang P, Su Z, Zhang L, Wang B, Song D (2018) A quantum many-body wave function inspired language modeling approach. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1303–1312

  37. Panahi A, Saeedi S, Arodz T (2019) word2ket: Space-efficient word embeddings inspired by quantum entanglement. arXiv preprint arXiv:1911.04975

  38. Meichanetzidis K, Gogioso S, De Felice G, Chiappori N, Toumi A, Coecke B (2020) Quantum natural language processing on near-term quantum computers. arXiv preprint arXiv:2005.04147

  39. Kartsaklis D, Fan I, Yeung R, Pearson A, Lorenz R, Toumi A, Felice G, Meichanetzidis K, Clark S, Coecke B (2021) lambeq: An efficient high-level python library for quantum nlp. arXiv preprint arXiv:2110.04236

  40. Zhang P, Hui W, Wang B, Zhao D, Song D, Lioma C, Simonsen JG (2022) Complex-valued neural network-based quantum language models. ACM Trans Inf Syst (TOIS) 40(4):1–31

    Google Scholar 

  41. Fan Z, Zhang J, Zhang P, Lin Q, Li Y, Qian Y (2024) Quantum-inspired language models based on unitary transformation. Inf Process & Manag 61(4):103741

    Article  MATH  Google Scholar 

  42. Zhang Y, Song D, Zhang P, Li X, Wang P (2019) A quantum-inspired sentiment representation model for twitter sentiment analysis. Appl Intell 49:3093–3108

    Article  MATH  Google Scholar 

  43. Guo P, Zhang J, Hou Y, Gong X, Wang P, Zhang Y (2019) Quantum-inspired dmatt-bigru for conversational sentiment analysis. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1602–1606. IEEE

  44. Meichanetzidis K, Toumi A, Felice G, Coecke B (2020) Grammar-aware question-answering on quantum computers. arXiv preprint arXiv:2012.037567

  45. Meichanetzidis K, Toumi A, Felice G, Coecke B (2023) Grammar-aware sentence classification on quantum computers. Quantum Mach Intell 5(1):10

    Article  MATH  Google Scholar 

  46. Shi J, Li Z, Lai W, Li F, Shi R, Feng Y, Zhang S (2021) Two end-to-end quantum-inspired deep neural networks for text classification. IEEE Trans on Knowl Data Eng 35(4):4335–4345

    Article  MATH  Google Scholar 

  47. Yang C-HH, Qi J, Chen SY-C, Tsao Y, Chen P-Y (2022) When bert meets quantum temporal convolution learning for text classification in heterogeneous computing. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8602–8606. IEEE

  48. Li G, Zhao X, Wang X (2024) Quantum self-attention neural networks for text classification. Sci China Inf Sci 67(4):142501

    Article  MATH  Google Scholar 

  49. Wu S, Li J, Zhang P, Zhang Y (2021) Natural language processing meets quantum physics: A survey and categorization. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3172–3182

  50. Li SS, Zhang X, Zhou S, Shu H, Liang R, Liu H, Garcia LP (2023) Pqlm-multilingual decentralized portable quantum language model. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE

  51. Zhao X, Wan H, Qi K (2024) Qpen: Quantum projection and quantum entanglement enhanced network for cross-lingual aspect-based sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 19670–19678

  52. Yan P, Li L, Jin M, Zeng D (2021) Quantum probability-inspired graph neural network for document representation and classification. Neurocomputing 445:276–286

    Article  MATH  Google Scholar 

  53. Qi J, Tejedor J (2022) Classical-to-quantum transfer learning for spoken command recognition based on quantum neural networks. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8627–8631. IEEE

  54. Di Sipio R, Huang J-H, Chen SY-C, Mangini S, Worring M (2022) The dawn of quantum natural language processing. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8612–8616. IEEE

  55. Lorenz R, Pearson A, Meichanetzidis K, Kartsaklis D, Coecke B (2023) Qnlp in practice: running compositional models of meaning on a quantum computer. J Artif Intell Res 76:1305–1342

    Article  MathSciNet  MATH  Google Scholar 

  56. Metawei MA, Taher M, ElDeeb H, Nassar SM (2023) A topic-aware classifier based on a hybrid quantum-classical model. Neural Computing Appl 35(25):18803–18812

    Article  Google Scholar 

  57. Munshi M, Gupta R, Jadav NK, Polkowski Z, Tanwar S, Alqahtani F, Said W (2024) Quantum machine learning-based framework to detect heart failures in healthcare 4.0. Softw : Pract Exp 54(2):168–185

    Google Scholar 

  58. Lloyd S, Weedbrook C (2018) Quantum generative adversarial learning. Phys Rev Lett 121(4):040502

    Article  MathSciNet  MATH  Google Scholar 

  59. Dallaire-Demers P-L, Killoran N (2018) Quantum generative adversarial networks. Phys Rev A 98(1):012324

    Article  MATH  Google Scholar 

  60. Hu L, Wu S-H, Cai W, Ma Y, Mu X, Xu Y, Wang H, Song Y, Deng D-L, Zou C-L et al (2019) Quantum generative adversarial learning in a superconducting quantum circuit. Sci Adv 5(1):2761

    Article  Google Scholar 

  61. Zeng J, Wu Y, Liu J-G, Wang L, Hu J (2019) Learning and inference on generative adversarial quantum circuits. Phys Rev A 99(5):052306

    Article  MATH  Google Scholar 

  62. Zoufal C, Lucchi A, Woerner S (2019) Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf 5(1):103

    Article  MATH  Google Scholar 

  63. Situ H, He Z, Wang Y, Li L, Zheng S (2020) Quantum generative adversarial network for generating discrete distribution. Inf Sci 538:193–208

    Article  MathSciNet  MATH  Google Scholar 

  64. Lu S, Duan L-M, Deng D-L (2020) Quantum adversarial machine learning. Phys Rev Res 2(3):033212

    Article  MATH  Google Scholar 

  65. Romero J, Aspuru-Guzik A (2021) Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Adv Quantum Technol 4(1):2000003

    Article  MATH  Google Scholar 

  66. Huang H-L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y et al (2021) Experimental quantum generative adversarial networks for image generation. Phys Rev Appl 16(2):024051

    Article  Google Scholar 

  67. Ahmed S, Sánchez Muñoz C, Nori F, Kockum AF (2021) Quantum state tomography with conditional generative adversarial networks. Phys Rev Lett 127(14):140502

    Article  MATH  Google Scholar 

  68. Li J, Topaloglu RO, Ghosh S (2021) Quantum generative models for small molecule drug discovery. IEEE Trans Quantum Eng 2:1–8

    Article  MATH  Google Scholar 

  69. Rudolph MS, Toussaint NB, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A (2022) Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys Rev X 12(3):031010

    Google Scholar 

  70. Zhou N-R, Zhang T-F, Xie X-W, Wu J-Y (2023) Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution. Signal Process: Image Commun 110:116891

    MATH  Google Scholar 

  71. Altares-López S, García-Ripoll JJ, Ribeiro A (2024) Autoqml: automatic generation and training of robust quantum-inspired classifiers by using evolutionary algorithms on grayscale images. Expert Syst Appl 244:122984

    Article  Google Scholar 

  72. Gong L-H, Pei J-J, Zhang T-F, Zhou N-R (2024) Quantum convolutional neural network based on variational quantum circuits. Opt Commun 550:129993

    Article  MATH  Google Scholar 

  73. Feng C-B, Zhang J, Li J, Zhou Y (2024) Seam mask guided partial reconstruction with quantum-inspired local aggregation for deep image stitching. In: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2430–2434. IEEE

  74. Zhang H, Zhao Q, Chen C (2024) A light-weight quantum self-attention model for classical data classification. Appl Intell 54(4):3077–3091

    Article  MATH  Google Scholar 

  75. He J, Zhu H, Zhou X (2024) Quantum image encryption algorithm via optimized quantum circuit and parity bit-plane permutation. J Inf Secur Appl 81:103698

    MATH  Google Scholar 

  76. Li Y, Xiao J, Chen Y, Jiao L (2019) Evolving deep convolutional neural networks by quantum behaved particle swarm optimization with binary encoding for image classification. Neurocomputing 362:156–165

    Article  MATH  Google Scholar 

  77. Pang C-Y, Zhou R-G, Hu B-Q, Hu W, El-Rafei A (2019) Signal and image compression using quantum discrete cosine transform. Inf Sci 473:121–141

    Article  MathSciNet  MATH  Google Scholar 

  78. Liu N, Huang T, Gao J, Xu Z, Wang D, Li F (2021) Quantum-enhanced deep learning-based lithology interpretation from well logs. IEEE Trans Geosci Remote Sens 60:1–13

    Google Scholar 

  79. Alam M, Kundu S, Topaloglu RO, Ghosh S (2021) Quantum-classical hybrid machine learning for image classification (iccad special session paper). In: 2021 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–7. IEEE

  80. Yang Y-F, Sun M (2022) Semiconductor defect detection by hybrid classical-quantum deep learning. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2323–2332

  81. Azevedo V, Silva C, Dutra I (2022) Quantum transfer learning for breast cancer detection. Quantum Mach Intell 4(1):5

    Article  MATH  Google Scholar 

  82. Easom-McCaldin P, Bouridane A, Belatreche A, Jiang R, Al-Maadeed S (2022) Efficient quantum image classification using single qubit encoding. IEEE Trans Neural Netw Learning Syst 35(2):1472–1486

    Article  Google Scholar 

  83. Shahwar T, Zafar J, Almogren A, Zafar H, Rehman AU, Shafiq M, Hamam H (2022) Automated detection of alzheimer’s via hybrid classical quantum neural networks. Electronics 11(5):721

    Article  MATH  Google Scholar 

  84. Ovalle-Magallanes E, Avina-Cervantes JG, Cruz-Aceves I, Ruiz-Pinales J (2022) Hybrid classical-quantum convolutional neural network for stenosis detection in x-ray coronary angiography. Expert Syst with Appl 189:116112

    Article  MATH  Google Scholar 

  85. Gong C, Guan W, Gani A, Qi H (2022) Network attack detection scheme based on variational quantum neural network. J Supercomputing 78(15):16876–16897

    Article  MATH  Google Scholar 

  86. Wei L, Liu H, Xu J, Shi L, Shan Z, Zhao B, Gao Y (2023) Quantum machine learning in medical image analysis: A survey. Neurocomputing 525:42–53

    Article  MATH  Google Scholar 

  87. Rashmi R, Snekhalatha U, Krishnan PT, Dhanraj V (2023) Fat-based studies for computer-assisted screening of child obesity using thermal imaging based on deep learning techniques: a comparison with quantum machine learning approach. Soft Computing 27(18):13093–13114

    Article  Google Scholar 

  88. Amin J, Anjum MA, Ibrar K, Sharif M, Kadry S, Crespo RG (2023) Detection of anomaly in surveillance videos using quantum convolutional neural networks. Image Vis Computing 135:104710

    Article  MATH  Google Scholar 

  89. Amin J, Anjum MA, Ibrar K, Sharif M, Kadry S, Crespo RG (2023) Detection of anomaly in surveillance videos using quantum convolutional neural networks. Image Vis Computing 135:104710

    Article  MATH  Google Scholar 

  90. Kulkarni V, Pawale S, Kharat A (2023) A classical-quantum convolutional neural network for detecting pneumonia from chest radiographs. Neural Computing Appl 35(21):15503–15510

    Article  Google Scholar 

  91. Fan F, Shi Y, Guggemos T, Zhu XX (2023) Hybrid quantum-classical convolutional neural network model for image classification. IEEE Trans Neural Netw Learning Syst 35(12):18145–18159

    Article  Google Scholar 

  92. Veeragandham S, Santhi H (2024) Optimization enabled deep quantum neural network for weed classification and density estimation. Expert Syst with Appl 243:122679

    Article  Google Scholar 

  93. Das M, Naskar A, Mitra P, Basu B (2024) Shallow quantum neural networks (sqnns) with application to crack identification. Appl Intell 54(2):1247–1262

    Article  MATH  Google Scholar 

  94. Hassan E, Hossain MS, Saber A, Elmougy S, Ghoneim A, Muhammad G (2024) A quantum convolutional network and resnet (50)-based classification architecture for the mnist medical dataset. Biomed Signal Process Control 87:105560

    Article  Google Scholar 

  95. Sinha PK, Marimuthu R (2024) Conglomeration of deep neural network and quantum learning for object detection: Status quo review. Knowl -Based Syst 288:111480

    Article  MATH  Google Scholar 

  96. Çavşi Zaim H, Yılmaz M, Yolaçan EN (2024) Design of gender recognition system using quantum-based deep learning. Neural Computing and Appl 36(4):1997–2014

    Article  MATH  Google Scholar 

  97. Rao GE, Rajitha B, Srinivasu PN, Ijaz MF, Woźniak M (2024) Hybrid framework for respiratory lung diseases detection based on classical cnn and quantum classifiers from chest x-rays. Biomed Signal Process Control 88:105567

    Article  Google Scholar 

  98. Chen L, Li T, Chen Y, Chen X, Wozniak M, Xiong N, Liang W (2024) Design and analysis of quantum machine learning: a survey. Connect Sci 36(1):2312121

    Article  MATH  Google Scholar 

  99. Munshi M, Gupta R, Jadav NK, Polkowski Z, Tanwar S, Alqahtani F, Said W (2024) Quantum machine learning-based framework to detect heart failures in healthcare 4.0. Softw : Pract Exp 54(2):168–185

    Google Scholar 

  100. Mir MS, Bhat HA, Khanday FA (2024) Efficient representation of bit-planes for quantum image processing. Multim Tools Appl 83(31):1–18

    Article  MATH  Google Scholar 

  101. Venkatesh K, Naik KJ, Shankar A (2024) Quantum convolution neural network for multi-nutrient detection and stress identification in plant leaves. Multim Tools Appl 80(24):1–23

    MATH  Google Scholar 

  102. Zhang Y, Song D, Zhang P, Wang P, Li J, Li X, Wang B (2018) A quantum-inspired multimodal sentiment analysis framework. Theor Computer Sci 752:21–40

    Article  MathSciNet  MATH  Google Scholar 

  103. Yu J, Zhu Z, Wang Y, Zhang W, Hu Y, Tan J (2020) Cross-modal knowledge reasoning for knowledge-based visual question answering. Pattern Recognit 108:107563

    Article  MATH  Google Scholar 

  104. Zhang Y, Song D, Li X, Zhang P, Wang P, Rong L, Yu G, Wang B (2020) A quantum-like multimodal network framework for modeling interaction dynamics in multiparty conversational sentiment analysis. Inf Fusion 62:14–31

    Article  MATH  Google Scholar 

  105. Li Q, Gkoumas D, Lioma C, Melucci M (2021) Quantum-inspired multimodal fusion for video sentiment analysis. Inf Fusion 65:58–71

    Article  Google Scholar 

  106. Li Q, Gkoumas D, Sordoni A, Nie J-Y, Melucci M (2021) Quantum-inspired neural network for conversational emotion recognition. Proceedings of the AAAI Conference on Artificial Intelligence 35:13270–13278

  107. Gkoumas D, Li Q, Dehdashti S, Melucci M, Yu Y, Song D (2021) Quantum cognitively motivated decision fusion for video sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 827–835

  108. Gkoumas D (2021) Quantum Cognitively Motivated Context-aware Multimodal Representation Learning for Human Language Analysis. Open University (United Kingdom), Milton Keynes, U.K

    Google Scholar 

  109. Liu Y, Zhang Y, Li Q, Wang B, Song D (2021) What does your smile mean? jointly detecting multi-modal sarcasm and sentiment using quantum probability. Find Assoc Computational Linguist : EMNLP 2021:871–880

    MATH  Google Scholar 

  110. Gandhi A, Adhvaryu K, Poria S, Cambria E, Hussain A (2023) Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Inf Fusion 91:424–444

    Article  Google Scholar 

  111. Zhu L, Zhu Z, Zhang C, Xu Y, Kong X (2023) Multimodal sentiment analysis based on fusion methods: a survey. Inf Fusion 95:306–325

    Article  MATH  Google Scholar 

  112. Qu Z, Li Y, Tiwari P (2023) Qnmf: a quantum neural network based multimodal fusion system for intelligent diagnosis. Inf Fusion 100:101913

    Article  MATH  Google Scholar 

  113. Al-Hawawreh M, Hossain MS (2023) A privacy-aware framework for detecting cyber attacks on internet of medical things systems using data fusion and quantum deep learning. Inf Fusion 99:101889

    Article  MATH  Google Scholar 

  114. Tiwari P, Zhang L, Qu Z, Muhammad G (2024) Quantum fuzzy neural network for multimodal sentiment and sarcasm detection. Inf Fusion 103:102085

    Article  Google Scholar 

  115. Rajalingam B, Priya R (2018) Multimodal medical image fusion based on deep learning neural network for clinical treatment analysis. Int J Chem Tech Res 11(06):160–176

    MATH  Google Scholar 

  116. Liu X, Xiao D (2019) Multimodality image fusion based on quantum wavelet transform and sum-modified-laplacian rule. Int J Theor Phys 58:734–744

    Article  MathSciNet  MATH  Google Scholar 

  117. Tan W, Tiwari P, Pandey HM, Moreira C, Jaiswal AK (2020) Multimodal medical image fusion algorithm in the era of big data. Neural computing and applications, 1–21

  118. Dogra A, Ahuja CK, Kumar S (2022) A multi-modality paradigm for ct and mri fusion with applications of quantum image processing. Concurrency Comput : Pract Exp 34(20):6610

    Article  MATH  Google Scholar 

  119. Cui C, Yang H, Wang Y, Zhao S, Asad Z, Coburn LA, Wilson KT, Landman BA, Huo Y (2023) Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review. Prog Biomed Eng 5(2):022001

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Major Science and Technology Research Projects in Henan Province (221100210400), China, National Natural Science Foundation of China (61672470). Major Public Welfare Projects in Henan Province, China (201300210200). Henan Provincial Science and Technology Key Research and Development Program (252102211034). Henan Provincial Key Scientific Research Projects of Higher Education Institutions (25B520001). Doctoral Research Fund of Zhengzhou University of Light Industry (2024BSJJ014).

Author information

Authors and Affiliations

Authors

Contributions

W.H.G. conceived this study and provided overall guidance. Z.J.H. extensively collected literature related to the topic of the paper, covering various aspects of quantum deep learning, including fundamental theory, algorithm design, experimental validation, and more. W. H.G., Z.J.H., W.L.J., L.D.Y., K.D.L., and H.Y.C. conducted algorithm analysis on the collected literature. And various quantum deep learning algorithms were classified and organized. The discussion is divided into three areas based on data types: text, images, and multimodal data. A comprehensive summary of quantum deep learning was also provided. All authors, W.H.G., Z.J.H., W.L.J., L.D.Y., K.D.L., and H Y. C. actively participated in the discussion and contributed to the writing of the manuscript, ensuring comprehensive coverage and coherence of the manuscript

Corresponding authors

Correspondence to Lijie Wang or Daiyi Li.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhang, J., Wang, L. et al. A survey on quantum deep learning. J Supercomput 81, 564 (2025). https://doi.org/10.1007/s11227-025-07083-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07083-3

Keywords