Skip to main content

Advertisement

Log in

Efficient multiparty quantum summation protocol in a restricted quantum environment

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper introduces a multiparty semi-quantum summation protocol that leverages graph states within a restricted quantum environment. The protocol enables n classical participants, with the assistance of a semi-honest third party, to compute the summation result modulo 2 while preserving the privacy of their individual inputs. Classical participants have only two quantum capabilities: performing Hadamard operations and Z-basis measurements. The adoption of one-way qubit transmission eliminates the need for additional quantum devices to prevent quantum Trojan horse attacks and reduces transmission costs. Comprehensive security analysis, comparison, and simulation experiments validate the security, efficiency, and feasibility of the proposed protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Yao AC (1982) Protocols for secure computations. 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982):160–164.

  2. Dery L, Tassa T, Yanai A (2021) Fear not, vote truthfully: secure multiparty computation of score-based rules. Expert Syst Appl 168:114434. https://doi.org/10.1016/j.eswa.2020.114434

    Article  MATH  Google Scholar 

  3. Bogdanov D, Niitsoo M, Toft T, Willemson J (2012) High-performance secure multi-party computation for data mining applications. Int J Inf Secur 11:403–418. https://doi.org/10.1007/s10207-012-0177-2

    Article  MATH  Google Scholar 

  4. Cachin C (1999) Efficient private bidding and auctions with an oblivious third party. In: Proc 6th ACM Conf Comput Commun Secur, Kent Ridge Digital Labs, Singapore, https://doi.org/10.1145/319709.319726

  5. Montenegro J, Fischer M, Lopez J, Peralta R (2013) Secure sealed-bid online auctions using discreet cryptographic proofs. Math Comput Model. https://doi.org/10.1016/j.mcm.2011.07.027

    Article  MATH  Google Scholar 

  6. Shor PW (1994) Algorithms for quantum computation: discrete logarithm and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe, 20–22 November 1994, pp. 124–134. https://doi.org/10.1109/SFCS.1994.365700

  7. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, Pennsylvania, USA, pp. 212–219. https://doi.org/10.1145/237814.237866

  8. Bennett CH, Brassard G (1984) Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 175–179

  9. Bennett CH, Brassard G, Mermin ND (1992) Quantum cryptography without Bell’s theorem. Phys Rev Lett 68:557–559. https://doi.org/10.1103/PhysRevLett.68.557

    Article  MathSciNet  MATH  Google Scholar 

  10. Grosshans F, Grangier P (2002) Continuous variable quantum cryptography using coherent States. Phys Rev Lett 88(5):057902. https://doi.org/10.1103/PhysRevLett.88.057902

    Article  MATH  Google Scholar 

  11. Gyongyosi L (2020) Multicarrier continuous-variable quantum key distribution. Theoret Comput Sci 816:67–95. https://doi.org/10.1016/j.tcs.2019.11.026

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng FG, Long GL, Liu XS (2003) Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A 68:042317. https://doi.org/10.1103/PhysRevA.68.042317

    Article  MATH  Google Scholar 

  13. Long GL, Deng FG, Wang C, Li XH, Wen K, Wang WY (2007) Quantum secure direct communication and deterministic secure quantum communication. Front Phys China 2:251–272. https://doi.org/10.1007/s11467-007-0050-3

    Article  MATH  Google Scholar 

  14. Hillery M, Buzek V, Berthiaume A (1999) Quantum secret sharing. Phys Rev A 59:1829–1834. https://doi.org/10.1103/PhysRevA.59.1829

    Article  MathSciNet  MATH  Google Scholar 

  15. Gottesman D (2000) Theory of quantum secret sharing. Phys Rev A 61:042311. https://doi.org/10.1103/PhysRevA.61.042311

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang YG, Cao WF, Wen QY (2009) Secure quantum private comparison. Phys Scr 80:065002. https://doi.org/10.1088/0031-8949/80/06/065002

    Article  MATH  Google Scholar 

  17. Tseng HY, Lin J, Hwang T (2012) New quantum private comparison protocol using EPR pairs. Quantum Inf Process 11:373–384. https://doi.org/10.1007/s11128-011-0251-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Hillery M, Ziman M, Buzek V, Bieliková M (2006) Towards quantum-based privacy and voting. Phys Lett A 349:75–81. https://doi.org/10.1016/j.physleta.2005.09.010

    Article  MATH  Google Scholar 

  19. Chen XB, Xu G, Yang YX, Wen QY (2010) An efficient protocol for the secure multi-party quantum summation. Int J Theor Phys 49:2793–2804. https://doi.org/10.1007/s10773-010-0472-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Greenberger DM, Horne MA, Zeilinger A (1989) Going beyond Bell’s theorem. In: Kafatos M (ed) Bell’s Theorem. Quantum Theory and Conceptions of the Universe, Kluwer Academic Publishers, pp 69–72

    MATH  Google Scholar 

  21. Shi R, Mu Y, Zhong H, Cui J, Zhang S (2016) Secure multiparty quantum computation for summation and multiplication. Sci Rep 6:19655. https://doi.org/10.1038/srep19655

    Article  MATH  Google Scholar 

  22. Zhang C, Situ H, Huang Q, Yang P (2017) Multi-party quantum summation without a trusted third party based on single particles. Int J Quantum Inf 15:1750010. https://doi.org/10.1142/S0219749917500101

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu W, Wang YB, Fan WQ (2017) A novel protocol for the quantum secure multi-party summation based on two-particle Bell states. Int J Theor Phys 56:2783–2791. https://doi.org/10.1007/s10773-017-3442-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Ji ZX, Zhang HG, Wang HZ, Wu FS, Jia JW, Wu WQ (2019) Quantum protocols for secure multi-party summation. Quantum Inf Process 18:168. https://doi.org/10.1007/s11128-018-2141-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Sutradhar K, Om H (2020) A generalized quantum protocol for secure multiparty summation. IEEE Trans Circuits Syst II: Express Briefs 67:2978–2982. https://doi.org/10.1109/TCSII.2020.2989447

    Article  MATH  Google Scholar 

  26. Cai XQ, Wang TY, Wei CY, Gao F (2022) Cryptanalysis of secure multiparty quantum summation. Quantum Inf Process 21(8):285. https://doi.org/10.1007/s11128-022-03638-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu WQ, Ma XX (2021) Multi-party quantum summation without a third party based on d-dimensional Bell states. Quantum Inf Process 20(6):200. https://doi.org/10.1007/s11128-021-03142-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Hayashi M, Koshiba T (2022) Quantum verifiable protocol for secure modulo zero-sum randomness. Quantum Inf Process 21(8):291. https://doi.org/10.1007/s11128-022-03639-x

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu WQ, Xie MZ (2023) Quantum secure multi-party summation using single photons. Entropy 25(4):590. https://doi.org/10.3390/e25040590

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye TY, Hu JL (2021) Quantum secure multiparty summation based on the phase shifting operation of d-level quantum system and its application. Int J Theor Phys. https://doi.org/10.1007/s10773-020-04700-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang JT, Yue Q, Ye T (2024) A quantum secure multi-party summation protocol based on one-direction quantum walks on a circle. Sci Sin Phys Mech Astron 54(4):240311. https://doi.org/10.1360/SSPMA-2023-0447

    Article  MATH  Google Scholar 

  32. Lian JY, Ye TY (2024) Hybrid protocols for multi-party semiquantum private comparison, multiplication and summation without a pre-shared key based on d-dimensional single-particle states. EPJ Quantum Technol 11:17. https://doi.org/10.1140/epjqt/s40507-024-00228-y

    Article  MATH  Google Scholar 

  33. Duan MY (2020) Multi-Party Quantum Summation within a d-Level Quantum System. Int J Theor Phys 59:1638–1643. https://doi.org/10.1007/s10773-020-04431-2

    Article  MathSciNet  MATH  Google Scholar 

  34. Boyer M, Kenigsberg D, Mor T (2007) Quantum key distribution with classical Bob. Phys Rev Lett 99(14):140501. https://doi.org/10.1103/PhysRevLett.99.140501

    Article  MathSciNet  MATH  Google Scholar 

  35. Boyer M, Gelles R, Kenigsberg D, Mor T (2009) Semiquantum key distribution. Phys Rev A 79(3):032341. https://doi.org/10.1103/PhysRevA.79.032341

    Article  MathSciNet  MATH  Google Scholar 

  36. Li L, Qiu D, Mateus P (2013) Quantum secret sharing with classical Bobs. J Phys A: Math Theor 46(4):045304. https://doi.org/10.1088/1751-8113/46/4/045304

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang MH, Li HF, Xia ZQ, Feng XY, Peng JY (2017) Semiquantum secure direct communication using EPR pairs. Quantum Inf Process 16(5):117. https://doi.org/10.1007/s11128-017-1573-3

    Article  MATH  Google Scholar 

  38. Ye TY, Ye CQ (2018) Measure-resend semi-quantum private comparison without entanglement. Int J Theor Phys 57:3819–3834. https://doi.org/10.1007/s10773-018-3894-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang C, Huang Q, Long Y, Sun Z (2021) Secure three-party semi-quantum summation using single photons. Int J Theor Phys 60:3478–3487. https://doi.org/10.1007/s10773-021-04921-x

    Article  MATH  Google Scholar 

  40. Dür W, Vidal G, Cirac JI (2000) Three qubits can be entangled in two inequivalent ways. Phys Rev A 62:062314. https://doi.org/10.1103/PhysRevA.62.062314

    Article  MathSciNet  Google Scholar 

  41. Pan HM (2022) Cryptanalysis and improvement of three-party semi-quantum summation using single photons. Int J Theor Phys 61:103. https://doi.org/10.1007/s10773-022-05101-1

    Article  MathSciNet  MATH  Google Scholar 

  42. Hu JL, Ye TY (2022) Three-party secure semiquantum summation without entanglement among quantum user and classical users. Int J Theor Phys 61:170. https://doi.org/10.1007/s10773-022-05158-y

    Article  MathSciNet  MATH  Google Scholar 

  43. Tian Y, Zhang N, Ye CQ, Bian GQ, Li J (2024) Different secure semi-quantum summation models without measurement. EPJ Quantum Technol 11:35. https://doi.org/10.1140/epjqt/s40507-024-00247-9

    Article  MATH  Google Scholar 

  44. Ye TY, Xu TJ, Geng MJ, Chen Y (2022) Two-party secure semiquantum summation against the collective-dephasing noise. Quantum Inf Process 21:118. https://doi.org/10.1007/s11128-022-03459-z

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang CW, Tsai CW, Chen CA, Lin J (2023) Robust semi-quantum summation over a collective-dephasing noise channel. Mathematics 11:1405. https://doi.org/10.3390/math11061405

    Article  MATH  Google Scholar 

  46. Cheng Q, Situ H, Huang Q, Zhang C (2024) Secure three-party quantum summation based on W-class states. Int J Theor Phys 63:98. https://doi.org/10.1007/s10773-024-05641-8

    Article  MathSciNet  MATH  Google Scholar 

  47. Ye CQ, Li J, Chen XB, Dong M, Ota K, Khalique A, Durad MH (2024) Semi-quantum secure multiparty summation and its applications to anonymous auction and ranking. Adv Quant Technol 7(3):2300347. https://doi.org/10.1002/qute.202300347

    Article  MATH  Google Scholar 

  48. Deng FG, Li XH, Zhou HY, Zhang ZJ (2005) Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A 72:044302. https://doi.org/10.1103/PhysRevA.72.044302

    Article  MATH  Google Scholar 

  49. Cai QY (2006) Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A 351:23–25. https://doi.org/10.1016/j.physleta.2005.10.050

    Article  MATH  Google Scholar 

  50. Carolan J, Harrold C, Sparrow C et al (2015) Universal linear optics. Science 349(6249):711–716

    MathSciNet  MATH  Google Scholar 

  51. Yang YC, Coppersmith SN, Friesen M (2019) Achieving high-fidelity single-qubit gates in a strongly driven charge qubit with 1/f charge noise. Npj Quant Inform 5(1):12

    MATH  Google Scholar 

  52. Leu AD, Gely MF, Weber MA, Smith MC, Nadlinger DP, Lucas DM (2023) Fast, high-fidelity addressed single-qubit gates using efficient composite pulse sequences. Phys Rev Lett 131(12):120601

    Google Scholar 

  53. Tsai CW, Yang CW, Lin J (2022) Multiparty mediated quantum secret sharing protocol. Quantum Inf Process 21:63. https://doi.org/10.1007/s11128-021-03402-8

    Article  MathSciNet  MATH  Google Scholar 

  54. Berkolaiko G, Kuchment P (2013) Introduction to quantum graphs. American Mathematical Society

    MATH  Google Scholar 

  55. Hein M, Dür W, Eisert J, Raussendorf R, Van den Nest M, Briegel HJ (2006) Entanglement in graph states and its applications. arXiv:quant-ph/0602096.

  56. Tsai CW, Wang CH (2023) Efficient mediated quantum secret sharing protocol in a restricted quantum environment. Ann Phys 535:2300116. https://doi.org/10.1002/andp.202300116

    Article  MATH  Google Scholar 

  57. Guskind J, Krawec WO (2022) Mediated semi-quantum key distribution with improved efficiency. Quantum Sci Technol 7:035019. https://doi.org/10.1088/2058-9565/ac7412

    Article  MATH  Google Scholar 

  58. Lin PH, Tsai CW, Hwang T (2019) Mediated semi-quantum key distribution using single photons. Ann Phys 531:1800347. https://doi.org/10.1002/andp.201800347

    Article  MathSciNet  MATH  Google Scholar 

  59. Tsai CW, Yang CW (2021) Lightweight mediated semi-quantum key distribution protocol with a dishonest third party based on Bell states. Sci Rep 11:23222. https://doi.org/10.1038/s41598-021-02614-3

    Article  MATH  Google Scholar 

  60. Coopmans T, Knegjens R, Dahlberg A et al (2021) NetSquid, a NETwork Simulator for QUantum Information using Discrete events. Commun Phys 4:164. https://doi.org/10.1038/s42005-021-00647-8

    Article  Google Scholar 

  61. Boyer M, Katz M, Liss R, Mor T (2017) Experimentally feasible protocol for semiquantum key distribution. Phys Rev A 96:062335. https://doi.org/10.1103/PhysRevA.96.062335

    Article  MATH  Google Scholar 

  62. Gyongyosi L, Imre S (2022) Advances in the quantum internet. Commun ACM 65(8):52–63. https://doi.org/10.1145/3524455

    Article  MATH  Google Scholar 

Download references

Funding

Project supported by the National Science and Technology Council, Taiwan, R.O.C. (Grant Nos. NSTC 113–2221-E-025–014 and NSTC 113–2634-F-005 -001 -MBK).

Author information

Authors and Affiliations

Authors

Contributions

C.-W. T. conceptualized the manuscript and proposed the methodology. He also wrote the main manuscript. C.-H. W. investigated relevant research, co-edited the main manuscript and implemented the experiments. Y.-H L. validated the correctness of the proposed scheme, reviewed and revised the main manuscript.

Corresponding author

Correspondence to Ying-Hsun Lai.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Equivalent relation proof

Appendix 1 Equivalent relation proof

This appendix describes the detailed process of establishing the equivalence between \({\left(\frac{1}{\sqrt{2}}\right)}^{n}\left({\sum }_{j=0}^{{2}^{n}-1}{\left(-1\right)}^{\Lambda }\left|j\rangle \right.\right)\) and Eq. (4). It is evident that the difference between the two quantum system states lies in the exponentiation of − 1. Therefore, if it can be proven that \({\left(-1\right)}^{\Delta }={\left(-1\right)}^{\Lambda }\), then we can demonstrate that the two quantum system states are equivalent. In this appendix, we use mathematical induction to achieve this goal, and the proofs are as follows:

Base Case: Consider a two-qubit complete graph state. There are three situations for \(Hw(j)\), i.e., \(Hw(j)=0\), 1, or 2. Each situation is analyzed as follows:

$$Hw\left( j \right) = 0\;{\text{because}}\;j = 00,\Lambda = \left\lfloor \frac{0}{2} \right\rfloor \;\bmod \;2 = 0\;{\text{and}}\;\Delta = \sum\nolimits_{0 \le x \le y \le 1} {\left( {j_{x} \times j_{y} } \right)} = 0$$
$$Hw\left( j \right) = 1\;{\text{because}}\;j = 01\;{\text{or10,}}\;\Lambda = \left\lfloor \frac{1}{2} \right\rfloor \;\bmod \;2 = 0\;{\text{and}}\;\Delta = \sum\limits_{0 \le x \le y \le 1} {\left( {j_{x} \times j_{y} } \right)} = 0$$
$$Hw\left( j \right) = 2:\;{\text{because}}\;j = 11{,}\;\Lambda = \left\lfloor \frac{2}{2} \right\rfloor \;\bmod \;2 = 1\;{\text{and}}\;\Delta = \sum\limits_{0 \le x \le y \le 1} {\left( {j_{x} \times j_{y} } \right)} = 1.$$

From the above-mentioned three situations, we can see that \({\left(-1\right)}^{\Delta }={\left(-1\right)}^{\Lambda }\), and the statement is true for the initial value, where the bit length of \(j\) is 2.

Inductive Hypothesis: Assume the statement is true for the bit length of \(j\) equal to \(n\). We denote the statement \({\left(-1\right)}^{{\Delta }_{n}}={\left(-1\right)}^{{\Lambda }_{n}}\).

Inductive Step: Consider the situation where the bit length of \(j\) is \(n+1\). Here, we discuss the two possible values of the \(\left(n+1\right)\)-th bit.

The value of this bit is 0: It is evident that \({\Lambda }_{n+1}={\Lambda }_{n}\). Because the \(\left(n+1\right)\)-th bit, \({j}_{n}\), is 0, \({\Delta }_{n+1}={\sum_{0\le x<y\le n}\left({j}_{x}\times {j}_{y}\right)=\sum_{0\le x<y\le n-1}\left({j}_{x}\times {j}_{y}\right)+\sum_{0\le x\le n-1}\left({j}_{x}\times {j}_{n}\right)=\Delta }_{n}+\sum_{0\le x\le n-1}\left({j}_{x}\times {j}_{n}\right)={\Delta }_{n}+0={\Delta }_{n}\). Because \({\left(-1\right)}^{{\Delta }_{n}}={\left(-1\right)}^{{\Lambda }_{n}}\), we can see that \({\left(-1\right)}^{{\Delta }_{n+1}}={\left(-1\right)}^{{\Lambda }_{n+1}}\). Therefore, this statement holds true in this situation.

The value of this bit is 1: If \({Hw\left(j\right)}_{n}\) is even, \({\Lambda }_{n+1}={\Lambda }_{n}\); otherwise, \({\Lambda }_{n+1}={\Lambda }_{n}+1\), where \({Hw\left(j\right)}_{n}\) is the Hamming weight of \(j\) when the bit length of \(j\) is n. In these situations, the following equation is obtained:

$$\begin{array}{c}\left\{\begin{array}{c}{\left(-1\right)}^{{\Lambda }_{n+1}}={\left(-1\right)}^{{\Lambda }_{n}}, {Hw\left(j\right)}_{n}\; is\; even. \\ {\left(-1\right)}^{{\Lambda }_{n+1}}={\left(-1\right)}^{{\Lambda }_{n}}\times -1, {Hw\left(j\right)}_{n}\; is\; odd.\end{array}\right.\#\end{array}$$
(A1)

However, we know \({\Delta }_{n+1}={\Delta }_{n}+\sum_{0\le x\le n-1}\left({j}_{x}\times {j}_{n}\right)={\Delta }_{n}+\sum_{0\le x\le n-1}\left({j}_{x}\times 1\right)={\Delta }_{n}+\sum_{0\le x\le n-1}{j}_{x}\). If \({Hw\left(j\right)}_{n}\) is even, \(\sum_{0\le x\le n-1}{j}_{x}\) will also be even. Otherwise, \(\sum_{0\le x\le n-1}{j}_{x}\) is odd. Therefore, we obtain the following equations for these situations:

$$\begin{array}{c}\left\{\begin{array}{c}\begin{array}{c}{\left(-1\right)}^{{\Delta }_{n+1}}={\left(-1\right)}^{{\Delta }_{n}+\sum_{0\le x\le n-1}{j}_{x}}={\left(-1\right)}^{{\Delta }_{n}}\times 1={\left(-1\right)}^{{\Delta }_{n}}, {Hw\left(j\right)}_{n}\; is\; even. \\ {\left(-1\right)}^{{\Delta }_{n+1}}={\left(-1\right)}^{{\Delta }_{n}+\sum_{0\le x\le n-1}{j}_{x}}={\left(-1\right)}^{{\Delta }_{n}}\times \left(-1\right), {Hw\left(j\right)}_{n}\; is\; odd.\end{array}\#\#\#\#\#\#\#\end{array}\right.\#\end{array}$$
(A2)

From Eqs. (A1) and (A2), we obtain \({\left(-1\right)}^{{\Delta }_{n+1}}={\left(-1\right)}^{{\Lambda }_{n+1}}\), and the statement holds under this situation.

According to these analyses, we can prove that the statement holds for a bit length of \(j\) is \(n+1\). Therefore, we prove that the equivalent relation exists between \({\left(\frac{1}{\sqrt{2}}\right)}^{n}\left({\sum }_{j=0}^{{2}^{n}-1}{\left(-1\right)}^{\Lambda }\left|j\rangle \right.\right)\) and Eq. (4).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CW., Wang, CH. & Lai, YH. Efficient multiparty quantum summation protocol in a restricted quantum environment. J Supercomput 81, 644 (2025). https://doi.org/10.1007/s11227-025-07086-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07086-0

Keywords