Skip to main content

Advertisement

Log in

SCNet-YOLO: a symmetric convolution network for multi-scenario ship detection based on YOLOv7

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Synthetic Aperture Radar (SAR) can work under all-weather and all-day conditions, and it has been widely applied in maritime fields. However, existing algorithms based on SAR still have limitations in ship detection due to the complex scenarios and small-sized targets. In order to solve those problems, a Symmetric Convolution Network based on YOLOv7 (SCNet-YOLO) was proposed for SAR ship target detection. Firstly, we have designed a Symmetric Convolutional structure (SConv), it is highly effective in enhancing the capability of feature extraction for small targets. Secondly, we add the dynamic head to fuse the attention mechanism and better capture the ship targets of various sizes. Finally, the WIoU is used as the loss function to capture the border information while avoiding overfitting. The experiment results show that the SCNet-YOLO proposed in this paper achieves a precision of 93.5% and mAP50:95 of 68.1% on the HRSID, and achieves a precision of 96.1% and mAP50:95 of 71.7% on the SSDD, and it is superior to other state-of-the-art SAR ship detection methods in the overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Yang M, Guo C, Zhong H, Yin H (2020) A curvature-based saliency method for ship detection in SAR images. IEEE Geosci Rem Sens Lett 18(9):1590–1594. https://doi.org/10.1109/lgrs.2020.3005197

    Article  MATH  Google Scholar 

  2. Rickard J, Dillard G (1977) Adaptive detection algorithms for multiple-target situations. IEEE Trans Aerosp Electron Syst, AES 13(4):338–343. https://doi.org/10.1109/taes.1977.308466

    Article  MATH  Google Scholar 

  3. Li H-C, Hong W, Wu Y, Fan P (2011) On the empirical-statistical modeling of SAR images with generalized gamma distribution. IEEE J Sel Topics Signal Process 5(3):386–397. https://doi.org/10.1109/jstsp.2011.2138675

    Article  MATH  Google Scholar 

  4. Kuttikkad S, Chellappa R (1994). Non-Gaussian CFAR techniques for target detection in high resolution SAR images. In Proceedings of 1st International Conference on Image Processing (Vol. 1, pp. 910–914). IEEE

  5. Liu Y, Ma Y, Chen F, Shang E, Yao W, Zhang S, Yang J (2024) YOLOv7oSAR: a lightweight high-precision ship detection model for SAR images based on the YOLOv7 algorithm. Rem Sens 16(5):913

    Article  Google Scholar 

  6. Banerjee A, Burlina P, Chellappa R (1999) Adaptive target detection in foliage-penetrating SAR images using alpha-stable models. IEEE Trans Image Process 8(12):1823–1831. https://doi.org/10.1109/83.806628

    Article  Google Scholar 

  7. Qin NX, Zhou NS, Zou NH, Gao NG (2012) A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images. IEEE Geosci Rem Sens Lett 10(4):806–810. https://doi.org/10.1109/lgrs.2012.2224317

    Article  MATH  Google Scholar 

  8. Ai J, Qi X, Yu W, Deng Y, Liu F, Shi L (2010) A new CFAR ship detection algorithm based on 2-D joint log-normal distribution in SAR images. IEEE Geosci Rem Sens Lett 7(4):806–810. https://doi.org/10.1109/lgrs.2010.2048697

    Article  MATH  Google Scholar 

  9. Zheng H, Xue X, Yue R, Liu C, Liu Z (2023) SAR image ship target detection based on receptive field enhancement module and cross-layer feature fusion. Electronics 13(1):167–167. https://doi.org/10.3390/electronics13010167

    Article  MATH  Google Scholar 

  10. Girshick R (2015) Fast r-cnn. arXiv preprint arXiv:1504.08083

  11. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https://doi.org/10.1109/tpami.2016.2577031

    Article  MATH  Google Scholar 

  12. Girshick R, Donahue J, Darrell T, Malik J (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580–587)

  13. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21–37). Springer International Publishing

  14. Liu S, Huang D (2018) Receptive field block net for accurate and fast object detection. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 385–400)

  15. Redmon J (2016) You only look once: unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

  16. Zhang T, Zhang X (2019) High-speed ship detection in SAR images based on a grid convolutional neural network. Rem Sens 11(10):1206. https://doi.org/10.3390/rs11101206

    Article  MATH  Google Scholar 

  17. Gao S, Liu JM, Miao YH, He ZJ (2022) A High-Effective Implementation of Ship Detector for SAR Images. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/lgrs.2021.3115121

    Article  MATH  Google Scholar 

  18. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).

  19. Chen P, Li Y, Zhou H, Liu B, Liu P (2020) Detection of small ship objects using anchor boxes cluster and feature pyramid network model for SAR imagery. J Marine Sci Eng 8(2):112. https://doi.org/10.3390/jmse8020112

    Article  MATH  Google Scholar 

  20. Zhao J, Guo W, Zhang Z, Yu W (2018) A coupled convolutional neural network for small and densely clustered ship detection in SAR images. Sci China Inf Sci. https://doi.org/10.1007/s11432-017-9405-6

    Article  MATH  Google Scholar 

  21. Yang S, An W, Li S, Zhang S, Zou B (2023) An inshore SAR ship detection method based on ghost feature extraction and cross-scale interaction. IEEE Geosci Rem Sens Lett 20:1

    Article  MATH  Google Scholar 

  22. Zhou W, Ben T (2023) IRMultiFuseNet: ghost hunter for infrared ship detection. Displays 81:102606–102606. https://doi.org/10.1016/j.displa.2023.102606

    Article  MATH  Google Scholar 

  23. Zhou Y, Wang S, Ren H, Hu J, Zou L, Wang X (2024) Multi-level feature-refinement anchor-free framework with consistent label-assignment mechanism for ship detection in SAR imagery. Rem Sens 16(6):975–975. https://doi.org/10.3390/rs16060975

    Article  MATH  Google Scholar 

  24. Jie C, Penghui H, Haopeng L, Yu N (2025) SFRT-DETR: A SAR ship detection algorithm based on feature selection and multi-scale feature focus. SIViP 19(1):1–11

    Google Scholar 

  25. Hu B, Miao H (2024) A lightweight SAR ship detection network based on deep multi-scale grouped convolution, network pruning and knowledge distillation. IEEE J Sel Topics Appl Earth Obs Rem Sens

  26. Wang CY, Bochkovskiy A, Liao HYM (2023) YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7464–7475)

  27. Qu S, Zhang H, Wu W, Xu W, Li Y (2021) Symmetric pyramid attention convolutional neural network for moving object detection. SIViP 15(8):1747–1755. https://doi.org/10.1007/s11760-021-01920-7

    Article  MATH  Google Scholar 

  28. Dai X, Chen Y, Xiao B, Chen D, Liu M, Liu Y, Zhang L (2021) Dynamic head: unifying object detection heads with attentions. ArXiv (Cornell University). https://doi.org/10.1109/cvpr46437.2021.00729

    Article  MATH  Google Scholar 

  29. Tong Z, Chen Y, Xu Z, Yu R (2023) Wise-IoU: bounding box regression loss with dynamic focusing mechanism. ArXiv.org. https://doi.org/10.48550/arXiv.2301.10051

  30. Wei S, Zeng X, Qu Q, Wang M, Su H, Shi J (2020) HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 8:120234–120254. https://doi.org/10.1109/access.2020.3005861

    Article  Google Scholar 

  31. Zhang T, Zhang X, Li J, Xu X, Wang B, Zhan X, Xu Y, Ke X, Zeng T, Su H (2021) SAR ship detection dataset (SSDD): official release and comprehensive data analysis. Remote Sens 13(18):3690. https://doi.org/10.3390/rs13183690

    Article  MATH  Google Scholar 

  32. Vaquero L, Brea VM, Mucientes M (2022) Tracking more than 100 arbitrary objects at 25 FPS through deep learning. Pattern Recogn 121:108205. https://doi.org/10.1016/j.patcog.2021.108205

    Article  Google Scholar 

  33. Liangjun Z, Feng N, Yubin Xi, Gang L, Zhongliang He, Yuanyang Z (2024) MSFA-YOLO: a multi-scale SAR ship detection algorithm based on fused attention. IEEE Access. https://doi.org/10.1109/access.2024.3365777

    Article  Google Scholar 

  34. Tang X, Zhang J, Xia Y, Xiao H (2024) DBW-YOLO: a high-precision SAR ship detection method for complex environments. IEEE J Sel Topics Appl Earth Obs Rem Sens 17:7029–7039. https://doi.org/10.1109/jstars.2024.3376558

    Article  Google Scholar 

  35. Tian C, Liu D, Xue F, Lv Z, Wu X (2024) Faster and lighter: a novel ship detector for SAR images. IEEE Geosci Rem Sens Lett 21:1–5. https://doi.org/10.1109/lgrs.2024.3351132

    Article  MATH  Google Scholar 

  36. Shan H, Liu W, Wang X, Hu Y, Duan X, Zhang Y (2024) Synthetic aperture radar ship detection based on efficient multiscale feature enhancement network. IEEE Trans Aerosp Electron Syst 60:8212

    Article  MATH  Google Scholar 

  37. Gao F, Cai C, Tang W, He Y (2024) A compact and high-efficiency anchor-free network based on contour key points for SAR ship detection. IEEE Geosci Rem Sens Lett 21:1–5. https://doi.org/10.1109/lgrs.2024.3354282

    Article  MATH  Google Scholar 

  38. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012–10022).

Download references

Acknowledgements

This work was supported by the Key Projects of the National Natural Science Foundation of China (Grant No.52331012) and National Natural Science Foundation of China (Grant No.61404083).

Author information

Authors and Affiliations

Authors

Contributions

Weina Zhou: Conceptualization, Methodology, Resources, Supervision, Writing—review & editing, Project administration. Yuqi Yang:Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing—original draft, Visualization Ming Zhao:Supervision, Writing—review & editing; Wenhua Wu: Supervision, Writing – review & editing,project administration.

Corresponding author

Correspondence to Wenhua Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Yang, Y., Zhao, M. et al. SCNet-YOLO: a symmetric convolution network for multi-scenario ship detection based on YOLOv7. J Supercomput 81, 630 (2025). https://doi.org/10.1007/s11227-025-07120-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07120-1

Keywords