Skip to main content

Advertisement

Log in

An analysis on component reliability of (nk)-star networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The reliability of interconnection networks has been a significant attention for parallel distributed computing. In the design of interconnection networks, one of the most fundamental concerns is the topological reliability, which can be usually characterized by the functional subsystem of the underlying network topology. Typically, the largest connected component in a faulty network is referred as the functional subsystem without severe performance degradation, which greatly reflects the communication ability and efficiency of interprocessors in the surviving network. The paper first characterizes all possibilities of small components when deleting at most \(n+4k-10\) vertices from the (nk)-star network for \(n \ge 8\), \(k \ge 4\), \(n-k \ge 4\). Then, we present a minimum neighborhood search algorithm to find the minimum number of neighbors of small components in terms of interconnection rules of (nk)-star networks. Finally, we implement simulation experiments and analyze its performance under different iterations. These findings contribute to the construction of highly reliable interconnection network systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Chang J-M, Pai K-J, Wu R-Y, Yang J-S (2019) The 4-component connectivity of alternating group networks. Theoret Comput Sci 766:38–45

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng E, Lipták L (2007) Linearly many faults in Cayley graphs generated by transposition trees. Inf Sci 177(22):4877–4882

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng E, Lipman M (2002) Increasing the connectivity of the star graphs. Networks 40(3):165–169

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiang W-K, Chen R-J (1995) The \((n, k)\)-star graph: a generalized star graph. Inf Process Lett 56(5):259–264

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiu C-W, Huang K-S, Yang C-B, Tseng C-T (2014) An adaptive heuristic algorithm with the probabilistic safety vector for fault-tolerant routing on the \((n, k)\)-star graph. Int J Found Comput Sci 25(6):723–743

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan J, Yang J, Zhou G, Zhao L, Zhang W (2009) Diagnosable evaluation of DCC linear congruential graphs under the PMC diagnostic model. Inf Sci 179(11):1785–1791

    Article  MathSciNet  MATH  Google Scholar 

  7. Gu M, Yang J-S, Chang J-M (2024) Assessing network reliability through perspectives of neighbor connectivity and subversion. IEEE Trans Netw Sci Eng 11(5):4384–4396

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo J, Lu M (2017) Conditional diagnosability of the round matching composition networks. Theoret Comput Sci 657:163–172

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang Y, Wen K, Lin L, Xu L, Hsieh S-Y (2023) Component fault diagnosability of hierarchical cubic networks. ACM Trans Des Autom Electron Syst 28(3):1084–4309

    Article  MATH  Google Scholar 

  10. Huang Y, Lin L, Cheng E, Xu L (2022) Component fault diagnosis and fault tolerance of alternating group graphs. Comput J 66(5):1184–1194

    Article  MathSciNet  MATH  Google Scholar 

  11. Hsieh S-H, Kao C-Y (2013) The conditional diagnosability of \(k\)-ary \(n\)-cubes under the comparison diagnosis model. IEEE Trans Comput 62(4):839–843

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin L, Huang Y, Lin Y, Xu L, Hsieh S-H (2021) An analysis on the reliability of the alternating group graph. IEEE Trans Reliab 70(4):1542–1555

    Article  MATH  Google Scholar 

  13. Lin L, Huang Y, Hsieh S-H, Xu L (2022) Strong reliability of star graphs interconnection networks. IEEE Trans Reliab 71(3):1241–1254

    Article  MATH  Google Scholar 

  14. Liu J, Zhou S, Zhang H, Chen G (2022) Vulnerability analysis of multiprocessor system based on burnt pancake networks. Discret Appl Math 314:304–320

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu X, Fan J, Cheng B, Wang Y, Yin B and Jia X (2024) A family of general architectures toward interconnection networks and data center networks. IEEE/ACM Transactions on Networking. 1-15

  16. Lv M, Zhou S, Chen G, Chen L, Liu J, Chang C-C (2020) On reliability of multiprocessor system based on star graph. IEEE Trans Reliab 69(2):715–724

    Article  MATH  Google Scholar 

  17. Wan Z, Lin L, Huang Y, Hsieh S-Y (2024) Component diagnosis strategy of star graphs interconnection networks. IEEE Trans Reliab 73(4):1907–1917

    Article  MATH  Google Scholar 

  18. Wang G, Yu J, Zou Y, Fan J, Cheng W (2024) A new measure of fault-tolerance for network reliability: double-structure connectivity. IEEE/ACM Trans Netw 32(1):874–889

    Article  MATH  Google Scholar 

  19. Wang J, Cheng D (2025) The 3-path-connectivity of pancake graphs. J Supercomput 81:245

    Article  MATH  Google Scholar 

  20. Wang Z, Li B, Deng L, Cao J, Wang J, Lu F, Fan Z, Jiang X (2024) Massively parallel simulations of multi-stage compressors on sunway TaihuLight. J Supercomput 80:11089–11128

    Article  MATH  Google Scholar 

  21. Xiang Y, Stewart IA (2010) One-to-many node-disjoint paths in \((n, k)\)-star graphs. Discret Appl Math 158(1):62–70

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu X, Li X, Zhou S, Hao R-X, Gu M-M (2017) The \(g\)-good-neighbor diagnosability of \((n, k)\)-star graphs. Theoret Comput Sci 659:53–63

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang X, Evans D, Megson G (2006) On the maximal connected component of a hypercube with faulty vertices III. Int J Comput Math 83(1):27–37

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang Y, Zhang M, Meng J (2024) Link fault tolerance of BC networks and folded hypercubes on \(h\)-extra \(r\)-component edge-connectivity. Appl Math Comput 462:128343

    MathSciNet  MATH  Google Scholar 

  25. Yang J, Yang W, Qi R, Tsai Q, Lin S, Dong F, Li K (2024) Parallel algorithm design and optimization of geodynamic numerical simulation application on the Tianhe new-generation high-performance computer. J Supercomput 80:331–362

    Article  MATH  Google Scholar 

  26. Zhai Y, Li X, Lin L (2018) \(t/m\)-diagnosability and diagnosis algorithm on \((n, k)\)-star graph network. Appl Math A J Chin Univ 33(3):10

    MathSciNet  MATH  Google Scholar 

  27. Zhou S (2012) The conditional fault diagnosability of \((n, k)\)-star graphs. Appl Math Comput 218(19):9742–9749

    MathSciNet  MATH  Google Scholar 

  28. Zhou S, Dong Q (2020) Reliability analysis of multiprocessor systems. Science Press Beijing, Beijing, pp 1–80

    MATH  Google Scholar 

  29. Zhou S, Xiao W (2010) Conditional diagnosability of alternating group networks. Inf Process Lett 110(10):403–409

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang Q, Zhou S, Yang L (2024) Link fault tolerability of 3-ary \(n\)-cube based on \(g\)-good-neighbor \(r\)-component edge-connectivity. J Supercomput 80:24738–24757

    Article  MATH  Google Scholar 

  31. Zhang Q, Xu L, Yang W (2021) Reliability analysis of the augmented cubes in terms of the extra edge-connectivity and the component edge-connectivity. J Supercomput 147:124–131

    MATH  Google Scholar 

  32. Zheng W, Zhou S, Cheng E, Zhang Q (2024) Non-inclusive \(g\)-extra diagnosability of interconnection networks under PMC model. Theoret Comput Sci 1022:114887

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62302107 and 62366007), Research Fund of Guangxi Key Lab of Multi-source Information Mining Security (No. 24-A-03-01), Basic Ability Enhancement Program for Young and Middle-Aged Teachers of Guangxi (No. 2023KY0063), Science and Technology Project of Guangxi (No. GuikeAD21220114), Natural Science Foundation of Guangxi Province (No. 2024JJB170073), Scientific and Technological Research Projects in Henan Province (No. 242102210146), and National Science and Technology Council of Taiwan (No. 113-2221-E-845-006).

Author information

Authors and Affiliations

Authors

Contributions

Zhihang Wang and Jiafei Liu wrote the main manuscript text and prepared all figures. Jiafei Liu, Chia-Wei Lee, Jingli Wu and Gaoshi Li reviewed and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jiafei Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, J., Lee, CW. et al. An analysis on component reliability of (nk)-star networks. J Supercomput 81, 626 (2025). https://doi.org/10.1007/s11227-025-07128-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07128-7

Keywords