Skip to main content

Advertisement

Log in

Transmission map-guided deep unfolding network for underwater image enhancement

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In recent years, with the development of maritime industries, the importance of underwater image enhancement and restoration has become increasingly prominent. However, underwater images often suffer from color distortion and low contrast due to the differential attenuation and absorption of light at different wavelengths by the medium. Most existing networks, however, adopt an end-to-end mapping approach that neglects prior information in the image enhancement process, resulting in a lack of interpretability. To address these challenges, we propose a transmission map-guided deep unfolded network for underwater image enhancement. Our method consists of three core components: Adaptive Mask Illumination Dynamic Prior (AMIDP), Transmission-Guided Multi-Scale Convolutional Dictionary (TGMCD), and Constant Spatial Aggregation Module (CSAM). AMIDP extracts the illumination characteristics of the image through a mask autoencoder and dynamic convolution, enabling the separate modeling of illumination and reflection information as shared and unique features, respectively. These features are then input into the TGMCD module, which is guided by the transmission map for iterative optimization. In this process, we replace the traditional proximal operator with a learnable multi-scale residual module, incorporating prior information and constraints to enhance model performance. Additionally, the CSAM is designed to strengthen information fusion across features, ensuring that the final enhanced image corrects distortions while retaining key details. Extensive experiments on multiple underwater datasets demonstrate that our method achieves state-of-the-art performance, validating its effectiveness and superiority. Our code is available at https://github.com/makabala/TGDU-master.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Lu Z, Wang W, Guo T, Wang F (2025) Single-image reflection removal via self-supervised diffusion models. J Supercomput 81(1):338

    Article  MATH  Google Scholar 

  2. Peng Y, Yan Y, Chen G, Feng B, Gao X (2023) An underwater attenuation image enhancement method with adaptive color compensation and detail optimization. J Supercomput 79(2):1544–1570

    Article  MATH  Google Scholar 

  3. Zhou J, Liu Q, Jiang Q, Ren W, Lam K-M, Zhang W (2023) Underwater camera: Improving visual perception via adaptive dark pixel prior and color correction. Int J Comput Vis 1–19

  4. Akkaynak D, Treibitz T (2018) A revised underwater image formation model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 6723–6732

  5. Akkaynak D, Treibitz T (2019) Sea-thru: A method for removing water from underwater images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1682–1691

  6. Mathivanan P, Dhanigaivel H, Kannan N, Kumar P (2019) Underwater image enhancement by wavelength compensation and de-hazing. Int J Appl Eng Res 14(6):37–41

    Google Scholar 

  7. Drews P, Nascimento E, Moraes F, Botelho S, Campos M (2013) Transmission estimation in underwater single images. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 825–830

  8. Ancuti C, Ancuti CO, Haber T, Bekaert P (2012) Enhancing underwater images and videos by fusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 81–88

  9. Ancuti CO, Ancuti C, De Vleeschouwer C, Sbert M (2019) Color channel compensation (3c): a fundamental pre-processing step for image enhancement. IEEE Trans Image Process 29:2653–2665

    Article  MATH  Google Scholar 

  10. Iqbal K, Odetayo M, James A, Salam RA, Talib AZH (2010) Enhancing the low quality images using unsupervised colour correction method. In: 2010 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp 1703–1709

  11. Drews PL, Nascimento ER, Botelho SS, Campos M (2016) Underwater depth estimation and image restoration based on single images. IEEE Comput Graphics Appl 36(2):24–35

    Article  MATH  Google Scholar 

  12. Hitam MS, Awalludin EA, Yussof WNJHW, Bachok Z (2013) Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In: 2013 International Conference on Computer Applications Technology (ICCAT). IEEE, pp 1–5

  13. Affonso C, Rossi ALD, Vieira FHA, Leon Ferreira ACP et al (2017) Deep learning for biological image classification. Expert Syst Appl 85:114–122

    Article  Google Scholar 

  14. Zeng K, Ma Q, Wu JW, Chen Z, Shen T, Yan C (2022) Fpga-based accelerator for object detection: a comprehensive survey. J Supercomput 78(12):14096–14136

    Article  Google Scholar 

  15. Xu X, Yang Z, Li J (2023) Amca: attention-guided multiscale context aggregation network for remote sensing image change detection. IEEE Trans Geosci Remote Sens 61:1–19

    MATH  Google Scholar 

  16. Yuan G, Song J, Li J (2025) If-usod: multimodal information fusion interactive feature enhancement architecture for underwater salient object detection. Inf Fus 117:102806

    Article  Google Scholar 

  17. Tseng K-K, Zhang R, Chen C-M, Hassan MM (2021) Dnetunet: a semi-supervised cnn of medical image segmentation for super-computing ai service. J Supercomput 77(4):3594–3615

    Article  MATH  Google Scholar 

  18. Su X, Li J, Hua Z (2022) Transformer-based regression network for pansharpening remote sensing images. IEEE Trans Geosci Remote Sens 60:1–23

    MATH  Google Scholar 

  19. Zhuang P, Wu J, Porikli F, Li C (2022) Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Trans Image Process 31:5442–5455

    Article  MATH  Google Scholar 

  20. Lu Z, Chen Y (2024) Self-supervised monocular depth estimation on water scenes via specular reflection prior. Digital Signal Process 149:104496

    Article  Google Scholar 

  21. Li J, Feng X, Hua Z (2021) Low-light image enhancement via progressive-recursive network. IEEE Trans Circuits Syst Video Technol 31(11):4227–4240

    Article  MATH  Google Scholar 

  22. Huang Z, Li J, Hua Z, Fan L (2022) Underwater image enhancement via adaptive group attention-based multiscale cascade transformer. IEEE Trans Instrum Meas 71:1–18

    MATH  Google Scholar 

  23. Lu Z, Chen Y (2022) Single image super-resolution based on a modified u-net with mixed gradient loss. Signal Image Video Process 16(5):1143–1151

    Article  MATH  Google Scholar 

  24. Chang B, Yuan G, Li J (2025) Mamba-enhanced spectral-attentive wavelet network for underwater image restoration. Eng Appl Artif Intell 143:109999

    Article  MATH  Google Scholar 

  25. Yang D, Leonard JJ, Girdhar Y (2024) Seasplat: representing underwater scenes with 3d gaussian splatting and a physically grounded image formation model. arXiv preprint arXiv:2409.17345

  26. Zhang T, Johnson-Roberson M (2023) Beyond nerf underwater: learning neural reflectance fields for true color correction of marine imagery. IEEE Robot Autom Lett 8(10):6467–6474

    Article  MATH  Google Scholar 

  27. Zhang T, Zhi W, Meyers B, Durrant N, Huang K, Mangelson J, Barbalata C, Johnson-Roberson M (2024) Recgs: removing water caustic with recurrent gaussian splatting. IEEE Robot Autom Lett

  28. Galdran A, Pardo D, Picón A, Alvarez-Gila A (2015) Automatic red-channel underwater image restoration. J Vis Commun Image Represent 26:132–145

    Article  MATH  Google Scholar 

  29. Zhou J, Wang Y, Zhang W, Li C (2021) Underwater image restoration via feature priors to estimate background light and optimized transmission map. Opt Express 29(18):28228–28245

    Article  Google Scholar 

  30. Pizer SM (1990) Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group. In: Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, Georgia, vol 337, p 2

  31. Rahman Z-u, Jobson DJ, Woodell GA (1996) Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol 3. IEEE, pp 1003–1006

  32. Liu Y-C, Chan W-H, Chen Y-Q (1995) Automatic white balance for digital still camera. IEEE Trans Consum Electron 41(3):460–466

    Article  MATH  Google Scholar 

  33. Fu X, Cao X (2020) Underwater image enhancement with global-local networks and compressed-histogram equalization. Signal Process Image Commun 86:115892

    Article  MATH  Google Scholar 

  34. Yu Q, Hou G, Zhang W, Huang B, Pan Z (2025) Contour and texture preservation underwater image restoration via low-rank regularizations. Expert Syst Appl 262:125549

    Article  Google Scholar 

  35. Li Y, Hou G, Zhuang P, Pan Z (2024) Dual high-order total variation model for underwater image restoration. arXiv preprint arXiv:2407.14868

  36. Li X, Hou G, Li K, Pan Z (2022) Enhancing underwater image via adaptive color and contrast enhancement, and denoising. Eng Appl Artif Intell 111:104759

    Article  MATH  Google Scholar 

  37. Li C, Anwar S, Hou J, Cong R, Guo C, Ren W (2021) Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans Image Process 30:4985–5000

    Article  Google Scholar 

  38. Qian H, Tong W, Mu P, Liu Z, Xu H (2022) Real-world underwater image enhancement via degradation-aware dynamic network. In: Pacific Rim International Conference on Artificial Intelligence. Springer, pp 530–541

  39. Yan Q, Hu T, Sun Y, Tang H, Zhu Y, Dong W, Van Gool L, Zhang Y (2023) Towards high-quality hdr deghosting with conditional diffusion models. IEEE Trans Circuits Syst Video Technol

  40. Yan Q, Yang K, Hu T, Chen G, Dai K, Wu P, Ren W, Zhang Y (2024) From dynamic to static: stepwisely generate hdr image for ghost removal. IEEE Trans Circuits Syst Video Technol

  41. Zhang Y, Zhang H, Nasrabadi NM, Huang TS (2013) Multi-metric learning for multi-sensor fusion based classification. Inf Fusion 14(4):431–440

    Article  MATH  Google Scholar 

  42. Yan Q, Wang H, Ma Y, Liu Y, Dong W, Woźniak M, Zhang Y (2024) Uncertainty estimation in hdr imaging with bayesian neural networks. Pattern Recogn 156:110802

    Article  Google Scholar 

  43. Fu J, Wang H, Xie Q, Zhao Q, Meng D, Xu Z (2022) Kxnet: a model-driven deep neural network for blind super-resolution. In: European Conference on Computer Vision. Springer, pp 235–253

  44. Wang H, Hou X, Yan X (2023) Dual degradation-inspired deep unfolding network for low-light image enhancement. arXiv preprint arXiv:2308.02776

  45. Lyu X, Hou J (2023) Enhancing low-light light field images with a deep compensation unfolding network. arXiv preprint arXiv:2308.05404

  46. Pham TT, Mai TTN, Lee C (2023) Deep unfolding network with physics-based priors for underwater image enhancement. In: 2023 IEEE International Conference on Image Processing (ICIP). IEEE, pp 46–50

  47. Mu P, Xu H, Liu Z, Wang Z, Chan S, Bai C (2023) A generalized physical-knowledge-guided dynamic model for underwater image enhancement. In: Proceedings of the 31st ACM International Conference on Multimedia, pp 7111–7120

  48. Land EH (1977) The retinex theory of color vision. Sci Am 237(6):108–129

    Article  MATH  Google Scholar 

  49. Lei P, Fang F, Zhang G, Xu M (2023) Deep unfolding convolutional dictionary model for multi-contrast mri super-resolution and reconstruction. arXiv preprint arXiv:2309.01171

  50. Chen J, Paris S, Durand F (2007) Real-time edge-aware image processing with the bilateral grid. ACM Trans Graphics (TOG) 26(3):103

    Article  MATH  Google Scholar 

  51. Chen Y, Dai X, Liu M, Chen D, Yuan L, Liu Z (2020) Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11030–11039

  52. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R (2022) Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 16000–16009

  53. Liu T, Chaman A, Belius D, Dokmanić I (2022) Learning multiscale convolutional dictionaries for image reconstruction. IEEE Trans Comput Imaging 8:425–437

    Article  MATH  Google Scholar 

  54. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  55. Zhao H, Gallo O, Frosio I, Kautz J (2016) Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging 3(1):47–57

    Article  MATH  Google Scholar 

  56. Wang D, Ma L, Liu R, Fan X (2022) Semantic-aware texture-structure feature collaboration for underwater image enhancement. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE, pp 4592–4598

  57. Zhang W, Wang Y, Li C (2022) Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement. IEEE J Oceanic Eng 47(3):718–735

    Article  MATH  Google Scholar 

  58. Li C, Guo C, Ren W, Cong R, Hou J, Kwong S, Tao D (2019) An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 29:4376–4389

    Article  MATH  Google Scholar 

  59. Yuan J, Cai Z, Cao W (2021) Tebcf: real-world underwater image texture enhancement model based on blurriness and color fusion. IEEE Trans Geosci Remote Sens 60:1–15

    MATH  Google Scholar 

  60. Fu Z, Wang W, Huang Y, Ding X, Ma K-K (2022) Uncertainty inspired underwater image enhancement. In: European Conference on Computer Vision. Springer, pp 465–482

  61. Xie J, Hou G, Wang G, Pan Z (2022) A variational framework for underwater image dehazing and deblurring. IEEE Trans Circuits Syst Video Technol 32(6):3514–3526

    Article  MATH  Google Scholar 

  62. Peng L, Zhu C, Bian L (2023) U-shape transformer for underwater image enhancement. IEEE Trans Image Process

  63. Zhang W, Zhou L, Zhuang P, Li G, Pan X, Zhao W, Li C (2023) Underwater image enhancement via weighted wavelet visual perception fusion. IEEE Trans Circuits Syst Video Technol

  64. Islam MJ, Xia Y, Sattar J (2020) Fast underwater image enhancement for improved visual perception. IEEE Robot Autom Lett 5(2):3227–3234

    Article  MATH  Google Scholar 

  65. Islam MJ, Luo P, Sattar J (2020) Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. arXiv preprint arXiv:2002.01155

  66. Li H, Li J, Wang W (2019) A fusion adversarial underwater image enhancement network with a public test dataset. arXiv preprint arXiv:1906.06819

  67. Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 586–595

  68. Panetta K, Gao C, Agaian S (2015) Human-visual-system-inspired underwater image quality measures. IEEE J Oceanic Eng 41(3):541–551

    Article  MATH  Google Scholar 

  69. Yang M, Sowmya A (2015) An underwater color image quality evaluation metric. IEEE Trans Image Process 24(12):6062–6071

    Article  MathSciNet  MATH  Google Scholar 

  70. Mittal A, Soundararajan R, Bovik AC (2012) Making a “completely blind’’ image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Article  MATH  Google Scholar 

  71. Jiang Z, Li Z, Yang S, Fan X, Liu R (2022) Target oriented perceptual adversarial fusion network for underwater image enhancement. IEEE Trans Circuits Syst Video Technol 32(10):6584–6598

    Article  MATH  Google Scholar 

  72. Chen R, Cai Z, Cao W (2021) Mffn: an underwater sensing scene image enhancement method based on multiscale feature fusion network. IEEE Trans Geosci Remote Sens 60:1–12

    Article  MATH  Google Scholar 

  73. Wei C, Wang W, Yang W, Liu J (2018) Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560

  74. Lee C, Lee C, Kim C-S (2013) Contrast enhancement based on layered difference representation of 2d histograms. IEEE Trans Image Process 22(12):5372–5384

    Article  MATH  Google Scholar 

  75. Guo X, Li Y, Ling H (2016) Lime: Low-light image enhancement via illumination map estimation. IEEE Trans Image Process 26(2):982–993

    Article  MathSciNet  MATH  Google Scholar 

  76. Hou G, Li N, Zhuang P, Li K, Sun H, Li C (2024) Non-uniform illumination underwater image restoration via illumination channel sparsity prior. IEEE Trans Circuits Syst Video Technol 34(2):799–814

    Article  MATH  Google Scholar 

  77. Zhang T, Huang K, Zhi W, Johnson-Roberson M (2024) Darkgs: Learning neural illumination and 3d gaussians relighting for robotic exploration in the dark. In: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 12864–12871

  78. Jin X, Jiao P, Duan Z-P, Yang X, Li C, Guo C-L, Ren B (2025) Lighting every darkness with 3dgs: Fast training and real-time rendering for hdr view synthesis. Adv Neural Inf Process Syst 37:80191–80219

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (61772319, 62272281, 62002200, 62202268), Shandong Natural Science Foundation of China (Grant no. ZR2024QF258, ZR2024QF259), Yantai science and technology innovation development plan(2022JCYJ031).

Author information

Authors and Affiliations

Authors

Contributions

Baocai Chang contributed to writing—original draft, writing—review and editing, and visualization. Peng Duan contributed to visualization and methodology. Jinjiang Li contributed to writing—review and editing, resources, and validation.

Corresponding author

Correspondence to Peng Duan.

Ethics declarations

Conflict of interest

The authors declare that no potential conflict of interest exists. There is no an undisclosed relationship that may pose a conflict of interest. There is no an undisclosed funding source that may pose a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section title of first appendix

Section title of first appendix

An appendix contains supplementary information that is not an essential part of the text itself but which may be helpful in providing a more comprehensive understanding of the research problem or it is information that is too cumbersome to be included in the body of the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, B., Duan, P. & Li, J. Transmission map-guided deep unfolding network for underwater image enhancement. J Supercomput 81, 647 (2025). https://doi.org/10.1007/s11227-025-07155-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07155-4

Keywords