Abstract
A probability function \(\mathbb{P}\) on an algebra of events is assumed. Some of the events are scientific refutations in the sense that the assumption of their occurrence leads to a contradiction. It is shown that the scientific refutations form a a boolean sublattice in terms of the subset ordering. In general, the restriction of \(\mathbb{P}\) to the sublattice is not a probability function on the sublattice. It does, however, have many interesting properties. In particular, (i) it captures probabilistic ideas inherent in some legal procedures; and (ii) it is used to argue against the commonly held view that behavioral violations of certain basic conditions for qualitative probability are indicative of irrationality. Also discussed are (iii) the relationship between the formal development of scientific refutations presented here and intuitionistic logic, and (iv) an interpretation of a belief function used in the behavioral sciences to explain empirical results about subjective, probabilistic estimation, including the Ellsberg paradox.
Similar content being viewed by others
References
G. Birkhoff J. Neumann Particlevon (1936) ArticleTitle‘The Logic of Quantum Mechanics’ Annals of Mathematics. 37 IssueID4 823–843 Occurrence HandleMR1503312
D. Ellsberg (1961) ArticleTitle‘Risk, Ambiguity and the Savage Axioms’ Quarterly Journal of Economics 75 643–649
K. Gödel (1931) ‘Über formal unentscheidbare Sätze per Principia Mathematica und verwandter Systeme I’, Monatshefte für Mathematik und Physik. 38 173–98
Gödel, K. (1933). Eine Interpretation des intuitionistischen Aussagenkalküls. (English translation in J.Hintikka (ed.). The Philosophy of Mathematics, Oxford, 1969.) Ergebnisse eines Mathematischen Kolloquiums 4, 39–40.
Heyting, A. (1930). Die Formalen Regeln der intuitionistischen Logik. (English translation in From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, 1998.) Sitzungsberichte der Preussichen Akademie der Wissenschaften 42–56.
Kolmogorov A. (1932). Zur Deutung der intuitionistischen Logik. (English translation in P.Mancosu (ed.). From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, 1998.) Mathematische Zeitschrift 35, 58–65.
Kolmogorov A. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. (Republished New York, Chelsea, 1946.
J.C.C. McKinsey A. Tarski (1946) ArticleTitle‘On Closed Elements in Closure Algebras’ Annals of Mathematics 45 122–162
L. Narens (2003a) ArticleTitle‘A Theory of Belief’ Journal of Mathematical Psychology 47 1–31 Occurrence Handle10.1016/S0022-2496(02)00017-2
Narens L. (2003b) ‘A New Foundation for Support Theory’, Manuscript
R.E. Nisbet T.D. Wilson (1977) ArticleTitle‘Telling More Than We Can Know: Verbal Reports on Mental Processes’ Psychological Review 84 231–258 Occurrence Handle10.1037//0033-295X.84.3.231
H. Rasiowa R. Sikorski (1968) The Mathematics of Metamathematics Panstwowe Wydawn. Naukowe Warsaw
M.H. Stone (1936) ArticleTitle‘The Theory of Representations for Boolean Algebras’ Trans.of the Amer.Math.Soc. 40 37–111 Occurrence HandleMR1501865
M.H. Stone (1937) ‘Topological Representations of Distributive Lattices and Brouwerian Logics’. Čat.Mat.Fys. 67 1–25
von Mises R. (1936). Wahrscheinlichkeit, Statistik un Wahrheit, 2nd edn. (English translation, Probability, Statistics and Truth, Dover, 1981.) Springer.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Narens, L. A Theory of Belief for Scientific Refutations. Synthese 145, 397–423 (2005). https://doi.org/10.1007/s11229-005-6199-9
Issue Date:
DOI: https://doi.org/10.1007/s11229-005-6199-9