Skip to main content
Log in

A Theory of Belief for Scientific Refutations

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

A probability function \(\mathbb{P}\) on an algebra of events is assumed. Some of the events are scientific refutations in the sense that the assumption of their occurrence leads to a contradiction. It is shown that the scientific refutations form a a boolean sublattice in terms of the subset ordering. In general, the restriction of \(\mathbb{P}\) to the sublattice is not a probability function on the sublattice. It does, however, have many interesting properties. In particular, (i) it captures probabilistic ideas inherent in some legal procedures; and (ii) it is used to argue against the commonly held view that behavioral violations of certain basic conditions for qualitative probability are indicative of irrationality. Also discussed are (iii) the relationship between the formal development of scientific refutations presented here and intuitionistic logic, and (iv) an interpretation of a belief function used in the behavioral sciences to explain empirical results about subjective, probabilistic estimation, including the Ellsberg paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. Birkhoff J. Neumann Particlevon (1936) ArticleTitle‘The Logic of Quantum Mechanics’ Annals of Mathematics. 37 IssueID4 823–843 Occurrence HandleMR1503312

    MathSciNet  Google Scholar 

  • D. Ellsberg (1961) ArticleTitle‘Risk, Ambiguity and the Savage Axioms’ Quarterly Journal of Economics 75 643–649

    Google Scholar 

  • K. Gödel (1931) ‘Über formal unentscheidbare Sätze per Principia Mathematica und verwandter Systeme I’, Monatshefte für Mathematik und Physik. 38 173–98

    Google Scholar 

  • Gödel, K. (1933). Eine Interpretation des intuitionistischen Aussagenkalküls. (English translation in J.Hintikka (ed.). The Philosophy of Mathematics, Oxford, 1969.) Ergebnisse eines Mathematischen Kolloquiums 4, 39–40.

  • Heyting, A. (1930). Die Formalen Regeln der intuitionistischen Logik. (English translation in From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, 1998.) Sitzungsberichte der Preussichen Akademie der Wissenschaften 42–56.

  • Kolmogorov A. (1932). Zur Deutung der intuitionistischen Logik. (English translation in P.Mancosu (ed.). From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, 1998.) Mathematische Zeitschrift 35, 58–65.

  • Kolmogorov A. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. (Republished New York, Chelsea, 1946.

  • J.C.C. McKinsey A. Tarski (1946) ArticleTitle‘On Closed Elements in Closure Algebras’ Annals of Mathematics 45 122–162

    Google Scholar 

  • L. Narens (2003a) ArticleTitle‘A Theory of Belief’ Journal of Mathematical Psychology 47 1–31 Occurrence Handle10.1016/S0022-2496(02)00017-2

    Article  Google Scholar 

  • Narens L. (2003b) ‘A New Foundation for Support Theory’, Manuscript

  • R.E. Nisbet T.D. Wilson (1977) ArticleTitle‘Telling More Than We Can Know: Verbal Reports on Mental Processes’ Psychological Review 84 231–258 Occurrence Handle10.1037//0033-295X.84.3.231

    Article  Google Scholar 

  • H. Rasiowa R. Sikorski (1968) The Mathematics of Metamathematics Panstwowe Wydawn. Naukowe Warsaw

    Google Scholar 

  • M.H. Stone (1936) ArticleTitle‘The Theory of Representations for Boolean Algebras’ Trans.of the Amer.Math.Soc. 40 37–111 Occurrence HandleMR1501865

    MathSciNet  Google Scholar 

  • M.H. Stone (1937) ‘Topological Representations of Distributive Lattices and Brouwerian Logics’. Čat.Mat.Fys. 67 1–25

    Google Scholar 

  • von Mises R. (1936). Wahrscheinlichkeit, Statistik un Wahrheit, 2nd edn. (English translation, Probability, Statistics and Truth, Dover, 1981.) Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Narens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narens, L. A Theory of Belief for Scientific Refutations. Synthese 145, 397–423 (2005). https://doi.org/10.1007/s11229-005-6199-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-005-6199-9

Keywords