Skip to main content
Log in

A frequentist interpretation of probability for model-based inductive inference

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The main objective of the paper is to propose a frequentist interpretation of probability in the context of model-based induction, anchored on the Strong Law of Large Numbers (SLLN) and justifiable on empirical grounds. It is argued that the prevailing views in philosophy of science concerning induction and the frequentist interpretation of probability are unduly influenced by enumerative induction, and the von Mises rendering, both of which are at odds with frequentist model-based induction that dominates current practice. The differences between the two perspectives are brought out with a view to defend the model-based frequentist interpretation of probability against certain well-known charges, including [i] the circularity of its definition, [ii] its inability to assign ‘single event’ probabilities, and [iii] its reliance on ‘random samples’. It is argued that charges [i]–[ii] stem from misidentifying the frequentist ‘long-run’ with the von Mises collective. In contrast, the defining characteristic of the long-run metaphor associated with model-based induction is neither its temporal nor its physical dimension, but its repeatability (in principle); an attribute that renders it operational in practice. It is also argued that the notion of a statistical model can easily accommodate non-IID samples, rendering charge [iii] simply misinformed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billingsley P. (1995) Probability and measure (3rd ed.). Wiley, NY

    Google Scholar 

  • Borel E. (1909) Sur les probabilites et leurs applications arithmetiques. Rend. Circ. Mat. Palermo 26: 247–271

    Article  Google Scholar 

  • Chaitin G. J. (2001) Exploring randomness. Springer, NY

    Book  Google Scholar 

  • Church A. (1940) On the concept of a random sequence. Bulletin of the American Mathematical Society 46: 130–135

    Article  Google Scholar 

  • Cox D. R. (1990) Role of models in statistical analysis. Statistical Science 5: 169–174

    Article  Google Scholar 

  • Cox D. R., Hinkley D. V. (1974) Theoretical statistics. Chapman & Hall, London

    Google Scholar 

  • Cramer H. (1946) Mathematical methods of statistics. Princeton Unversity Press, NJ

    Google Scholar 

  • Doob J. L. (1953) Stochastic processes. Wiley, New York

    Google Scholar 

  • Fine T. L. (1973) Theories of probability—an examination of foundations. Academic Press, NY

    Google Scholar 

  • Fisher R. A. (1922) On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society A 222: 309–368

    Article  Google Scholar 

  • Fisher R. A. (1925a) Statistical methods for research workers. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Fisher R. A. (1925b) Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society 22: 700–725

    Article  Google Scholar 

  • Fisher R. A. (1934) Two new properties of maximum likelihood. Proceedings of the Royal Statistical Society A 144: 285–307

    Article  Google Scholar 

  • Fisher R. A. (1955) Statistical methods and scientific induction. Journal of The Royal Statistical Society B 17: 69–78

    Google Scholar 

  • Giere R. N. (1984) Understanding scientific reasoning (2nd ed.). Holt. Rinehart and Winston, NY

    Google Scholar 

  • Gillies D. (2000) Philosophical theories of probability. Routledge, London

    Google Scholar 

  • Glymour C. (1981) Theory and evidence. Princeton University Press, NJ

    Google Scholar 

  • Godambe, V., Sprott, D. (eds) (1971) Foundations of statistical inference holt. Rinehart and Winston of Canada, Toronto

    Google Scholar 

  • Gossett, W. S. (aka Student) (1908). The probable error of the mean. Biometrika, 6, 1–25.

    Google Scholar 

  • Hacking I. (1965) Logic of statistical inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Hacking I. (1968) One problem about induction. In: Lakatos I. (eds) The problem of inductive logic. North-Holland, Amsterdam, pp 44–59

    Google Scholar 

  • Hajek, A. (2007). Interpretations of probability. In the Stanford Encyclopedia of Philosophy http://plato.stanford.edu/entries/probability-interpret/.

  • Harper, W., & Hooker, C. (Eds.). (1976). Foundations of probability theory statistical inference and statistical theories of science (Vol. 2). Dordrecht, The Netherlands: D. Reidel.

  • Howson C., Urbach P. (2006) Scientific reasoning: The Bayesian approach (3rd ed.). Open Court, Chicago, IL

    Google Scholar 

  • Kolmogorov, A. N. (1933). Foundations of the theory of probability (2nd English edition). NY: Chelsea Publishing Co.

  • Kolmogorov A. N. (1963) On tables of random numbers. Sankhya, Indian Journal of Statistics A 25: 369–376

    Google Scholar 

  • Kolmogorov A. N. (1983) On logical foundations of probability theory. In: Ito. K., Prokhorov J. V. (eds) Probability theory and mathematical statistics. Springer-Verlag, NY, pp 1–5

    Chapter  Google Scholar 

  • Kyburg H. E. (1974) The logical foundations of statistical inference. Reidel, Dorbrecht-Holland

    Book  Google Scholar 

  • Lehmann E. L. (1986) Testing statistical hypotheses (2nd ed.). Wiley, NY

    Book  Google Scholar 

  • Lehmann E. L. (1990) Model specification: The views of Fisher and Neyman, and later developments. Statistical Science 5: 160–168

    Article  Google Scholar 

  • Li M., Vitanyi P. (2008) An introduction to Kolmogorov complexity and its applications (3rd ed.). Springer, NY

    Book  Google Scholar 

  • Lindley, D. V. (1965). Introduction to probability and statistics from the bayesian viewpoint (Vol. 1). Cambridge: Cambridge University Press.

  • Martin-Löf P. (1969) The literature on von Mises’ Kollectives revisited. Theoria 35: 12–37

    Article  Google Scholar 

  • Mayo D. G. (1996) Error and the growth of experimental knowledge. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Mayo D.G. (1997) Duhem’s problem, the Bayesian way, and error statistics, or “What’s Belief Got to Do with It?”. Philosophy of Science 64: 222–244

    Article  Google Scholar 

  • Mayo D. G., Spanos A. (2004) Methodology in practice: Statistical misspecification testing. Philosophy of Science 71: 1007–1025

    Article  Google Scholar 

  • Mayo D. G., Spanos A. (2006) Severe testing as a basic concept in a Neyman–Pearson philosophy of induction. British Journal for the Philosophy of Science 57: 323–357

    Article  Google Scholar 

  • Mayo, D. G., & Spanos, A. (2011). Error statistics. In D. Gabbay, P. Thagard., & J. Woods, Philosophy of statistics, handbook of philosophy of science. Amsterdam: Elsevier.

  • Morrison D. E., Henkel R. E. (1970) The significance test controversy: A reader. Aldine, Chicago

    Google Scholar 

  • Neyman J. (1952) Lectures and conferences on mathematical statistics and probability (2nd ed.). U.S. Department of Agriculture, Washington

    Google Scholar 

  • Neyman J. (1956) Note on an article by Sir Ronald Fisher. Journal of the Royal Statistical Society B 18: 288–294

    Google Scholar 

  • Neyman J. (1977) Frequentist probability and frequentist statistics. Synthese 36: 97–131

    Article  Google Scholar 

  • Neyman J., Pearson E. S. (1933) On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society A 231: 289–337

    Article  Google Scholar 

  • Nies A. (2009) Computability and randomness. Oxford University Press, Oxford

    Book  Google Scholar 

  • Pearson E. S. (1955) Statistical concepts in their relation to reality. Journal of the Royal Statistical Society B 17: 204–207

    Google Scholar 

  • Pearson K. (1920) The fundamental problem of practical statistics. Biometrika XIII: 1–16

    Article  Google Scholar 

  • Reichenbach, H. (1934/1949). The Theory of probability. Berkeley, CA: University of California Press.

  • Reichenbach H. (1951) The rise of scientific philosophy. University of California Press, Berkeley, CA

    Google Scholar 

  • Renyi A. (1970) Probability theory. North-Holland, Amsterdam

    Google Scholar 

  • Salmon W. C. (1967) The foundations of scientific inference. University of Pittsburgh Press, Pittsburgh

    Google Scholar 

  • Salmon W. C. (1984) Scientific explanation and the causal structure of the world. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Seidenfeld T. (1979) Philosophical problems of statistical inference. Reidel, Dorbrecht-Holland

    Google Scholar 

  • Skyrms B. (2000) Choice and chance: An introduction to inductive logic (4th ed.). Wadsworth, US

    Google Scholar 

  • Spanos A. (1999) Probability theory and statistical inference: Econometric modeling with observational data. Cambridge University Press, Cambridge

    Google Scholar 

  • Spanos, A. (2006). Where do statistical models come from? Revisiting the problem of specification. In J. Rojo (Ed.) Optimality: The second Erich L. Lehmann symposium lecture notes-monograph series (Vol. 49, pp. 98–119), Institute of Mathematical Statistics, Beachwood, OH.

  • Spanos A. (2007) Curve-fitting, the reliability of inductive inference and the error-statistical approach. Philosophy of Science 74: 1046–1066

    Article  Google Scholar 

  • Spanos A. (2009) Statistical misspecification and the reliability of inference: The simple t-test in the presence of Markov dependence. The Korean Economic Review 25: 165–213

    Google Scholar 

  • Spanos A. (2010) Theory testing in economics and the error statistical perspective. In: Mayo D.G., Spanos A. (eds) Error and inference. Cambridge University Press, Cambridge, pp 202–246

    Google Scholar 

  • Spanos A. (2010) The discovery of Argon: A case for learning from data?. Philosophy of Science 77: 359–380

    Article  Google Scholar 

  • Spanos A. (2010) Is frequentist testing vulnerable to the base-rate fallacy?. Philosophy of Science 77: 565–583

    Article  Google Scholar 

  • Spanos A. (2010) Statistical adequacy and the trustworthiness of empirical evidence: Statistical vs. substantive information. Economic Modelling 27: 1436–1452

    Article  Google Scholar 

  • Ville J. (1939) Etude Critique de la Notion de Collectif. Gauthier-Villars, Paris

    Google Scholar 

  • Von Mises R. (1928) Probability, statistics and truth (2nd ed.). Dover, NY

    Google Scholar 

  • Williams D. (2001) Weighing the odds: A course in probability and statistics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wald A. (1937) Die Widerspruchsfreiht des Kollektivbergriffes in der Wahrscheinlicheitsrechnung. Ergebnisse eines mathematischen Kolloquiums 8: 38–72

    Google Scholar 

  • Wasserman L. (2006) All of nonparametric statistics. Springer, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aris Spanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanos, A. A frequentist interpretation of probability for model-based inductive inference. Synthese 190, 1555–1585 (2013). https://doi.org/10.1007/s11229-011-9892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-9892-x

Keywords

Navigation