Abstract
The central aim of this paper is to shed light on the nature of explanation in computational neuroscience. I argue that computational models in this domain possess explanatory force to the extent that they describe the mechanisms responsible for producing a given phenomenon—paralleling how other mechanistic models explain. Conceiving computational explanation as a species of mechanistic explanation affords an important distinction between computational models that play genuine explanatory roles and those that merely provide accurate descriptions or predictions of phenomena. It also serves to clarify the pattern of model refinement and elaboration undertaken by computational neuroscientists.
Similar content being viewed by others
References
Aizawa K. (2010) Computation in cognitive science: It is not all about Turing-equivalent computation. Studies in History and Philosophy of Science Part A 41(3): 227–236
Andersen R. A., Essick G. K., Siegel R. M. (1985) Encoding of spatial location by posterior parietal neurons. Science 230: 450–458
Andersen R. A., Mountcastle V. B. (1983) The influence of the angle of gaze upon the excitability of light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience 3: 532–548
Batterman R. (2002) Asymptotics and the role of minimal models. The British Journal for the Philosophy of Science 53(1): 21–38
Batterman R. (2009) Idealization and modeling. Synthese 169: 427–446
Bechtel W. (2002) Decomposing the brain: A long term pursuit. Brain and Mind 3: 229–242
Bechtel W. (2008) Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Routledge, London
Bechtel W., Abrahamsen A. (2005) Explanation: A mechanistic alternative. Studies in History and Philosophy of the Biological and Biomedical Sciences 36: 421–441
Bechtel W., Mundale J. (1999) Multiple realizability revisited: Linking cognitive and neural states. Philosophy of Science 66: 175–207
Bechtel W., Richardson R. C. (1993) Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press, Princeton, NJ
Bickle J. (1998) Psychoneural reduction: The new wave. Bradford/MIT Press, Cambridge, MA
Bogen J. (2005) Regularities and causality; generalizations and causal explanations. Studies in History and Philosophy of Science Part C 36(2): 397–420
Bogen J. (2008) The Hodgkin–Huxley equations and the concrete model: Comments on Craver, Schaffner, and Weber. Philosophy of Science 75(5): 1034–1046
Brozović M., Abbott L. F., Andersen R. A. (2008) Mechanism of gain modulation at single neuron and network levels. Journal of Computational Neuroscience 25: 158–168
Bunge M. (1964) Phenomenological theories. In: Bunge M. (eds) The critical approach: In honor of Karl Popper. Free Press, New York
Catterall W. A. (2000) From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26(1): 13–25
Chance F. S., Abbott L. F., Reyes A. D. (2002) Gain modulation from background synaptic input. Neuron 35: 773–782
Chemero A., Silberstein M. (2008) After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science 75: 1–27
Churchland P. S. (1986) Neurophilosophy. MIT Press, Cambridge, MA
Churchland P. M. (2005) Functionalism at forty: A critical retrospective. Journal of Philosophy 102(1): 33–50
Churchland P. S., Koch C., Sejnowski T. J. (1988) Computational neuroscience. Science 241: 1299–1306
Cole K. S., Moore J. W. (1960) Potassium ion current in the squid giant axon: Dynamic characteristic. Biophysical Journal 1: 1–14
Craver C. F. (2001) Role functions, mechanisms, and hierarchy. Philosophy of Science 68(1): 53–74
Craver C. F. (2006) When mechanistic models explain. Synthese 153: 355–376
Craver C. F. (2007) Explaining the brain. Oxford University Press, Oxford
Craver C. F. (2008) Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philosophy of Science 75: 1022–1033
Crick F. (1989) The recent excitement about neural networks. Nature 337: 129–132
Cummins R. (1975) Functional analysis. Journal of Philosophy 72: 741–765
Cummins R. (1983) The nature of psychological explanation. Bradford/MIT Press, Cambridge, MA
Cummins R. (2000) “How does it work?” vs. “What are the laws?” Two conceptions of psychological explanation. In: Keil F., Wilson R. (eds) Explanation and cognition. MIT Press, Cambridge, MA, pp 117–145
Dawson M. R. W. (1998) Understanding cognitive science. Wiley-Blackwell, Oxford
Dayan P., Abbott L. F. (2001) Theoretical neuroscience: Computational and mathematical modeling of neural systems. MIT Press, Cambridge, MA
Downes, S. M. (1992) The importance of models in theorizing: A deflationary semantic approach. In D. Hull, M. Forbes, & K. Okrulik (Eds.), Proceedings of the Philosophy of Science Association (Vol. 1, pp. 142–153). East Lansing.
Doyle D. A., Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. (1998) The structure of the potassium channel: Molecular basis of K + conduction and selectivity. Science 280: 69–77
Dray W. H. (1993) Philosophy of history. (2nd ed.). Prentice Hall, Englewood, NJ
Dror I. E., Gallogly D. P. (1999) Computational analyses in cognitive neuroscience: In defense of biological implausibility. Psychonomic Bulletin & Review 6(2): 173–182
Einevoll G.T. (2006) Mathematical modeling of neural activity. In: Skjeltorp A., Belushkin A.V. (eds) Dynamics of complex interconnected systems: Networks and bioprocesses NATO Science Series II: Mathematics, Physics & Chemistry. Kluwer, Amsterdam
Einevoll G. T., Heggelund P. (2000) Mathematical models for the spatial receptive-field organization of nonlagged X-cells in dorsal lateral geniculate nucleus of cat. Visual Neuroscience 17(6): 871–885
Einevoll G. T., Plesser H. E. (2002) Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli. Network: Computation in Neural Systems 13: 503–530
Einevoll G. T., Plesser H. E. (2005) Responses of the difference-of-Gaussians model to circular drifting-grating patches. Visual Neuroscience 22(4): 437–446
Enroth-Cugell C., Robson J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187(3): 517–552
Ermentrout G. B., Terman D. H. (2010) Mathematical foundations of neuroscience. Springer, New York
Fodor J. A. (1974) Special sciences (Or: The disunity of science as a working hypothesis). Synthese 28: 97–115
Fodor J. A. (1975) The language of thought. Harvard University Press, Cambridge, MA
Forber P. (2010) Confirmation and explaining how possible. Studies in the History and Philosophy of Science Part C: Studies in the History and Philosophy of Biological and Biomedical Sciences 41(1): 32–40
Haugeland J. (1978) The nature and plausibility of cognitivism. Behavioral and Brain Sciences 1: 215–226
Hempel C. G. (1965) Aspects of scientific explanation and other essays in the philosophy of science. Free Press, New York
Hille B. (2001) Ion channels of excitable membranes. (3rd ed.). Sinauer, Sunderland, MA
Hille B., Armstrong C. M., MacKinnon R. (1999) Ion channels: From idea to reality. Nature Medicine 5(10): 1105–1109
Hodgkin A. L., Huxley A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117: 500–544
Johnson-Laird P. N. (1983) Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge University Press, New York
Kaplan, D. M. & Craver, C. F. (forthcoming): The explanatory force of dynamical and mathematical models in neuroscience: A mechanistic perspective. Philosophy of Science.
Kuffler S. (1953) Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16(1): 37–68
Machamer P., Darden L., Craver C. F. (2000) Thinking about mechanisms. Philosophy of Science 67: 1–25
MacKinnon R. (2004) Nobel lecture: Potassium channels and the atomic basis of selective ion conduction. Bioscience Reports 24(2): 75–100
Marr D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W.H.Freeman & Co. Ltd, San Francisco
Marr D., Hildreth E. (1980) Theory of edge detection. Proceedings of the Royal Society of London Series B, Biological Sciences 207(1167): 187–217
Marr D., Ullman S., Poggio T. (1979) Bandpass channels, zero-crossings, and early visual information processing. Journal of the Optical Society of America 69(6): 914–916
Mastronarde D. N. (1992) Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: Receptive-field properties and retinal inputs. Visual Neuroscience 8(5): 407–441
Mauk M. D. (2000) The potential effectiveness of simulations versus phenomenological models. Nature Neuroscience 3(7): 649–651
Mazzoni P., Andersen R. A., Jordan M. I. (1991) A more biologically plausible learning rule applied to a network model of cortical area 7a. Cerebral Cortex 1: 293–307
Mel B. W. (1993) Synaptic integration in an excitable dendritic tree. Journal of Neurophysiology 70: 1086–1101
Neher E. (1992) Nobel lecture: Ion channels for communication between and within cells. Neuron 8(4): 605–612
Newell A., Simon H. A. (1976) Computer science as an empirical enquiry: Symbols and search. Communications of the ACM 19: 113–126
Piccinini G. (2006) Computational explanation in neuroscience. Synthese 153: 343–353
Piccinini G. (2007) Computing mechanisms. Philosophy of Science 74: 501–526
Piccinini G. (2010) The mind as neural software? Revisiting functionalism, computationalism, and computational functionalism. Philosophy and Phenomenological Research 81(2): 269–311
Piccinini, G., & Craver, C. F. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese. doi:10.1007/s11229-011-9898-4.
Pouget A., Sejnowski T. J. (1997) Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience 9(2): 222–237
Pouget A., Snyder L. H. (2000) Computational approaches to sensorimotor transformations. Nature Neuroscience 3(Suppl): 1192–1198
Putnam, H. (1967). The nature of mental states (Reprinted from Mind, language, and reality, by Putnam, Ed., 1975, Cambridge: Cambridge University Press.)
Pylyshyn Z. W. (1984) Computation and cognition. MIT Press, Cambridge, MA
Revonsuo A. (2001) On the nature of explanation in the neurosciences. In: Machamer P., Grush R., McLaughlin P. (eds) Theory and method in the neurosciences. University of Pittsburgh Press, Pittsburgh, PA, pp 45–69
Rodieck R. W. (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5(11): 583–601
Rusanen A.M., Lappi O. (2007) The limits of mechanistic explanation in neurocognitive sciences. In: Vosniadou S., Kayser D., Protopapas A. (eds) Proceedings of the European cognitive science conference. Francis and Taylor, London
Salinas E., Abbott L. F. (1996) A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences 90: 11956–11961
Salinas E., Thier P. (2000) Gain modulation: A major computational principle of the central nervous system. Neuron 27: 15–21
Salmon W. (1984) Scientific explanation and the causal structure of the world. Princeton University Press, Princeton, NJ
Salmon W. (1989) Four decades of scientific explanation. University of Pittsburg Press, Pittsburg, PA
Schaffner K. F. (2008) Theories, models, and equations in biology: The heuristic search for emergent simplifications in neurobiology. Philosophy of Science 75(5): 1008–1021
Sejnowski T. J. (2001) Computational neuroscience. In: Smelser N. J., Baltes P. B. (eds) Encyclopedia of the social and behavioral sciences. Elsevier, Oxford, pp 2460–2465
Shadmehr R., Wise S. (2005) Computational neurobiology of reaching and pointing: A foundation for motor learning. MIT Press, Cambridge, MA
Shagrir O. (1998) Multiple realization, computation and the taxonomy of psychological states. Synthese 114: 445–461
Shagrir O. (2006) Why we view the brain as a computer. Synthese 153: 393–416
Shapiro L. A. (2000) Multiple realizations. Journal of Philosophy 97: 635–654
Smolensky P. (1988) On the proper treatment of connectionism. Behavioral and Brain Sciences 11: 1–23
Von Eckart B., Poland J. S. (2004) Mechanism and explanation in cognitive neuroscience. Philosophy of Science 71: 972–984
Weber M. (2008) Causes without mechanisms: Experimental regularities, physical laws, and neuroscientific explanation. Philosophy of Science 75(5): 995–1007
Weisberg M. (2007) Three kinds of idealization. Journal of Philosophy 104(12): 639–659
Woodward J. (2003) Making things happen. Oxford University Press, New York
Zipser D., Andersen R. A. (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331: 679–684
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kaplan, D.M. Explanation and description in computational neuroscience. Synthese 183, 339–373 (2011). https://doi.org/10.1007/s11229-011-9970-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11229-011-9970-0