Abstract
Source Specific Multicast (SSM) promises a wider dissemination of group distribution services than Any Source Multicast, as it relies on simpler routing strategies with reduced demands on the infrastructure. However, SSM is designed for á priori known and changeless addresses of multicast sources and thus withstands any easy extension to mobility. Up until now only few approaches arose from the Internet research community, leaving SSM source mobility as a major open problem. The purpose of this paper is twofold. At first we analyze characteristic properties of multicast shortest path trees evolving under source mobility. Analytically and by stochastic simulations we derive measures on the complexity of SSM routing under source mobility. At second we introduce a straightforward extension to multicast routing for transforming (morphing) source specific delivery trees into optimal trees rooted at a relocated source. All packet forwarding is done free of tunneling. Multicast service disruption and signaling overhead for the algorithms remain close to minimal. Further on we evaluate the proposed scheme using both, analytical estimates and stochastic simulations based on a variety of real-world Internet topology data. Detailed comparisons are drawn to bi-directional tunneling, as well as to proposals on concurrent distribution trees.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
C. Adjih, L. Georgiadis, P. Jacquet and W. Szpankowski, Multicast tree structure and the power law, IEEE Transact. Information Theory 52(4) (2006) 1508–1521.
T. Aura, Cryptographically generated Addresses (CGA), RFC 3972, IETF (2005).
S. Bhattacharyya, An overview of Source-Specific Multicast (SSM), RFC 3569, IETF (2003).
R.C. Chalmers and K.C. Almeroth, On the topology of multicast trees, IEEE/ACM Trans. Netw. 11(1) (2003) 153–165.
R.-S. Chang and Y.-S. Yen, A multicast Routing Protocol with Dynamic Tree Adjustment for Mobile IPv6, Journ. Information Science and Engineering 20 (2004) 1109–1124.
J.C.I. Chuang and M.A. Sirbu, Pricing multicast communication: A cost-based approach, Telecommunication Systems 17(3) (2001) 281–297. Presented at the INET’98, Geneva, Switzerland, July 1998.
S.E. Deering, Host extensions for IP multicasting, RFC 1112, IETF (1989).
B. Fenner, M. Handley, H. Holbrook and I. Kouvelas, Protocol independent Multicast—sparse Mode (PIM-SM): protocol Specification (Revised), Internet Draft—Work in Progress 12, IETF (2006).
R. Govindan and H. Tangmunarunkit, Heuristics for internet map discovery, in: Procedures. IEEE INFOCOM 2000, Vol. 3, IEEE Computer Society, Tel Aviv, Israel (2000) pp. 1371–1380.
O. Heckmann, M. Piringer, J. Schmitt and R. Steinmetz, On realistic Network Topologies for Simulation, in: MoMeTools ’03: Proceedings of the ACM SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network Research, ACM Press, New York, NY, USA (2003) pp. 28–32.
H. Holbrook and B. Cain, Source-specific Multicast for IP, Internet Draft—Work in Progress 07, IETF. ftp.rfc-editor.org/in-notes/internet-drafts/draft-ietf-ssm% -arch-07.txt (2005).
M. Janic and P. Van Mieghem, On properties of multicast routing trees, Int. J. Commun. Syst. 19(1) (2006) 95–114.
C. Jelger and T. Noel, Supporting mobile SSM sources for IPv6 (MSSMSv6), Internet Draft—Work in Progress (expired) 00, individual (2002).
D.B. Johnson, C. Perkins and J. Arkko, Mobility Support in IPv6, RFC 3775, IETF (2004).
M. Kellil, I. Romdhani, H.-Y. Lach, A. Bouabdallah and H. Bettahar, Multicast receiver and sender access control and its applicability to mobile IP environments: A survey, IEEE Comm. Surveys & Tutorials 7(2) (2005) 46–70.
R. Koodli, Fast handovers for Mobile IPv6, RFC 4068, IETF (2005).
G. Kurup and Y.A. Sekercioglu, Source specific Multicast (SSM) for MIPv6: A survey of Current State of Standardisation and Research, in: Proceedings of Australian Telecommunications, Networks and Applications Conference (ATNAC 2003), Melbourne (2003). http://atnac2003.atcrc.com/ORALS/KURUP.pdf
H. Lee, S. Han and J. Hong, Efficient mechanism for source mobility in source specific multicast, in: K. Kawahara and I. Chong, Eds., Proceedings of ICOIN2006, Vol. 3961 of LNCS, SpringerVerlag, Berlin, Heidelberg (in press) (2006).
D. Magoni, nem: A software for Network Topology Analysis and Modeling, in: Proceedings of the 10th IEEE Symposium on Modeling, Analysis and Simulation of Computer & Telecomm. Systems (MASCOTS’02), IEEE Computer Society, Fort Worth, Texas, USA (2002) pp. 364–371.
D. Magoni and J.-J. Pansiot, Internet topology Modeler Based on Map Sampling, in: Proceedings of the 7th IEEE Symposium on Computers and Communications, IEEE Computer Society, Taomina, Italy (2002) pp. 1021–1027.
MaxMind LLC (2006), GeoIP, http://www.maxmind.com.
A. Medina, A. Lakhina, I. Matta and J. Byers, ’BRITE: Boston university Representative Internet Topology gEnerator,’ http://www.cs.bu.edu/brite/ (2005).
A. O’Neill, (2002) Mobility Management and IP Multicast, Internet Draft—Work in Progress (expired) 01, IETF.
G. Phillips, S. Shenker and H. Tangmunarunkit, Scaling of multicast trees: Comments on the chuang-sirbu scaling law, in: SIGCOMM ’99: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, ACM Press, New York, NY, USA (1999) pp. 41–51.
I. Romdhani, H. Bettahar and A. Bouabdallah, Transparent handover for mobile multicast sources, in: P. Lorenz and P. Dini, Eds., Proceedings of the IEEE ICN’06’, IEEE Press (2006).
I. Romdhani, M. Kellil, H.-Y. Lach, A. Bouabdallah and H. Bettahar, IP mobile multicast: challenges and solutions, IEEE Comm. Surveys & Tutorials 6(1) (2004) 18–41.
SCAN project: Internet Maps. SCAN+Lucent map (2005), http://www.isi.edu/scan/mercator/maps.html.
T.C. Schmidt and M. W¨hlisch, Extending SSM to MIPv6—problems, solutions and improvements, Computational Methods in Science and Technology 11(2) (2005a) 147–152. Selected Papers from TERENA Networking Conference, Poznań (2005a).
T.C. Schmidt and M. W¨hlisch, Multicast mobility in MIPv6: Problem Statement, IRTF Internet Draft—Work in Progress 00, MobOpts, (2005b).
T.C. Schmidt and M. W¨hlisch, Predictive versus Reactive—analysis of handover performance and its implications on IPv6 and multicast mobility, Telecommunication Systems 30(1–3) (2005c) 123–142.
T.C. Schmidt and M. W¨hlisch, Seamless multicast Handover in a Hierarchical Mobile IPv6 environment (M-HMIPv6), Internet Draft—Work in Progress 04, individual (2005d). ftp://ftp.rfc-editor.org/in-notes/internet-drafts/draft-sc hmidt-waehlisch-mhmipv6-04.txt
J.S. Silva, S. Duarte, E. Monteiro and F. Boavida (2003) MNet—A new multicast approach for the future Internet, in: Proceedings of the 10th Intern. Conference on Telecommunications, Vol. 1 (2005d) pp. 340–347.
H. Soliman, C. Castelluccia, K. Malki and L. Bellier, Hierarchical mobile IPv6 mobility management (HMIPv6), RFC 4140, IETF (2005).
W.R. Stevens, TCP/IP Ilustrated, The Protocols, Vol. 1. Addison Wesley, Reading, MA (1994).
D. Thaler, Supporting mobile SSM sources for IPv6, in: proceedings of ietf meeting, individual (2001). www.ietf.org/proceedings/01dec/slides/magma-2.pdf
P. Van Mieghem, Performance Analysis of Communication Networks and Systems Cambridge University Press, Cambridge, (2006).
P. Van Mieghem, G. Hooghiemstra and R. van der Hofstad, On the efficiency of multicast, IEEE/ACM Trans. Netw. 9(6) (2001) 719–732.
A. Varga et al. The OMNeT++ discrete event simulation system (2005). http://www.omnetpp.org.
G. Xylomenos and G.C. Polyzos, IP multicast for mobile hosts, IEEE Comm. Mag. 35(1) (1997) 54–58.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmidt, T.C., Wählisch, M. Morphing distribution trees—On the evolution of multicast states under mobility and an adaptive routing scheme for mobile SSM sources. Telecommun Syst 33, 131–154 (2006). https://doi.org/10.1007/s11235-006-9010-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-006-9010-4