Skip to main content
Log in

Cross-layer resource allocation for real-time services in OFDM-based cognitive radio systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The resource allocation problem on the downlink of a multiuser OFDM-based cognitive radio (CR) system is formulated using a cross-layer (MAC and PHY layers) approach with the aim of satisfying quality of service (QoS) requirements in real-time applications. The number of subchannels available to the CR system is time-varying as a result of the stochastic nature of the activities of the primary users (PUs). The MAC layer QoS requirements are dynamically converted to PHY layer rate requirements; the conversion depends on the delivery status of queued packets as well as the number of available subchannels. Simulation results show that the proposed cross-layer resource allocation algorithm can provide substantial transmit power reductions compared to existing PHY layer and MAC layer solutions designed for multiuser OFDM systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitola, J. III, & Maguire, G. Q. Jr. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. National Telecommunications and Information Administration, United states frequency allocation chart [Online]. Available: http://www.ntia.doc.gov/osmhome/allochrt.html.

  3. Cabric, D., Mishra, S. M., Willkomm, D., Brodersen, R., & Wolisz, A. (2005). A cognitive radio approach for usage of virtual unlicensed spectrum. In Proc. of 14th IST mobile wireless communications summit, Dresden, Germany, June 2005.

  4. Federal Communications Commission (2005). FCC adopts rule changes for smart radios. Cognitive radio technologies proceeding (CRTP), ET Docket No. 03-108.

  5. Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42(3), S8–S14.

    Article  Google Scholar 

  6. Wong, C. Y., Cheng, R. S., Letaief, K. B., & Murch, R. D. (1999). Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.

    Article  Google Scholar 

  7. Ergen, M., Coleri, S., & Varaiya, P. (2003). QoS aware adaptive resource allocation techniques for fair scheduling in OFDMA based broadband wireless access systems. IEEE Transactions on Broadcasting, 49(4), 363–370.

    Article  Google Scholar 

  8. Zhang, G. Subcarrier and bit allocation for real-time services in multiuser OFDM systems. In Proc. of IEEE international conference on communications (Vol. 5, pp. 2985–2989). Paris, France.

  9. Yu, G., Zhang, Z., Chen, Y., Shi, J., & Qiu, P. (2006). A novel resource allocation algorithm for real-time services in multiuser OFDM systems. In Proc. of IEEE 63rd vehicular technology conference (VTC 2006-Spring) (Vol. 3, pp. 1156–1160). Melbourne, Australia, May 2006.

  10. Qin, T., & Leung, C. (2007). Fair adaptive resource allocation for multiuser OFDM cognitive radio systems. In Proc. of second international conference on communications and networking in China (CHINACOM ’07) (pp. 115–119). Shanghai, China, August 2007.

  11. Attar, A., Holland, O., Nakhai, M. R., & Aghvami, A. H. (2008). Interference-limited resource allocation for cognitive radio in orthogonal frequency-division multiplexing networks. IET Communications, 2(6), 806–814.

    Article  Google Scholar 

  12. Cheng, P., Zhang, Z., Chen, H.-H., & Qiu, P. (2008). Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems. IET Communications, 2(6), 815–826.

    Article  Google Scholar 

  13. Ryu, S., Ryu, B. H., Seo, H., Shin, M., & Park, S. (2005). Wireless packet scheduling algorithm for OFDMA system based on time-utility and channel state. ETRI Journal, 27(6), 777–787.

    Article  Google Scholar 

  14. Hui, D., Lau, V., & Lam, W. H. (2007). Cross-layer design for OFDMA wireless systems with heterogeneous delay requirements. IEEE Transactions on Wireless Communications, 6(8), 2872–2880.

    Article  Google Scholar 

  15. Jeong, S. S., Jeong, D. G., & Jeon, W. S. Cross-layer design of packet scheduling and resource allocation in OFDMA wireless multimedia networks. In Proc. of IEEE 63rd vehicular technology conference (VTC 2006-Spring) (Vol. 1, pp. 309–313). Melbourne, Australia.

  16. Mwangoka, J., Letaief, K., & Cao, Z. (2008). Robust end-to-end QoS maintenance in non-contiguous OFDM based cognitive radios. In Proc. of IEEE international conference on communications (ICC ’08) (pp. 2905–2909). Beijing, China, May 2008.

  17. Weiss, T., Hillenbrand, J., Krohn, A., & Jondral, F. K. (2004). Mutual interference in OFDM-based spectrum pooling systems. In Proc. of IEEE 59th vehicular technology conference (VTC 2004-Spring) (Vol. 4, pp. 1873–1877). Milan, Italy, May 2004.

  18. Goldsmith, A. J., & Chua, S.-G. (1997). Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.

    Article  Google Scholar 

  19. Su, H., & Zhang, X. (2008). Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks. IEEE Journal on Selected Areas in Communications, 26(1), 118–129.

    Article  Google Scholar 

  20. Gallager, R. (1968). Information theory and reliable communication. New York: Wiley.

    Google Scholar 

  21. Erceg, V., Greenstein, L. J., Tjandra, S. Y., Parkoff, S. R., Gupta, A., Kulic, B., Julius, A. A., & Bianchi, R. (1999). An empirically based path loss model for wireless channels in suburban environments. IEEE Journal on Selected Areas in Communications, 7(7), 1205–1211.

    Article  Google Scholar 

  22. Garrett, M. W., & Willinger, W. (1994). Analysis, modeling and generation of self-similar VBR video traffic. ACM SIGCOMM Computer Communication Review, 24(4), 269–280.

    Article  Google Scholar 

  23. Luenberger, D. G. (1973). Introduction to linear and nonlinear programming. Reading: Addison-Wesley.

    Google Scholar 

  24. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge.

  25. Luenberger, D. G. (1969). Optimization by vector space methods. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Leung, C. Cross-layer resource allocation for real-time services in OFDM-based cognitive radio systems. Telecommun Syst 42, 97–108 (2009). https://doi.org/10.1007/s11235-009-9171-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-009-9171-z

Keywords

Navigation