Skip to main content

Advertisement

Log in

Modelling the energy cost of a fully operational wireless sensor network

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Several applications have been proposed for wireless sensor networks, including habitat monitoring, structural health monitoring, pipeline monitoring, precision agriculture, active volcano monitoring, and many more. The energy consumption of these applications is a critical feasibility metric that defines the scope and usefulness of wireless sensor networks. This paper provides a comprehensive energy model for a fully functional wireless sensor network. While the model uses toxic gas detection in oil refineries as an example application, it can easily be generalized. The model provides a sufficient insight about the energy demand of the existing or proposed communication protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh, B. (1951). Random distances within a rectangle and between two rectangles. Bulletin of the Calcutta Mathematical Society, 4.

  2. Boukerche, A., Fei, X., & Araujo, R. B. (2006). An energy-efficient sensing coverage protocol for surveillance and monitoring applications using wireless sensors. In Performance, computing, and communications conference, 2006. IPCCC 2006. 25th IEEE international (pp. 611–616). April 2006.

  3. Bettstetter, C. (2002). On the connectivity of wireless multihop networks with homogeneous and inhomogeneous range assignment. In IEEE vehicular technology conference, VTC 2002 (pp. 1706–1710).

  4. Chao, X., Dargie, W., & Lin, G. (2008). Energy model for h2s monitoring wireless sensor network. In CSE ’08: proceedings of the 2008 11th IEEE international conference on computational science and engineering (pp. 402–409). Washington: IEEE Computer Society.

  5. Dargie, W., Schill, A., Mochaourab, R., & Guan, L. (2009). A topology control protocol for 2d Poisson distributed wireless sensor networks. In The third international workshop on telecommunication networking, applications and systems.

  6. Feeney, L. M. (2001). An energy consumption model for performance analysis of routing protocols for mobile ad hoc networks. Mobile Networks and Applications, 6(3), 239–249.

    Article  Google Scholar 

  7. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  8. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking, 11(1), 2–16.

    Article  Google Scholar 

  9. Issariyakul, T., & Hossain, E. (2008). Signal & communication. In Introduction to network simulator NS2. Berlin: Springer.

    Google Scholar 

  10. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., & Turon, M. (2007). Health monitoring of civil infrastructures using wireless sensor networks. In IPSN ’07: proceedings of the 6th international conference on information processing in sensor networks (pp. 254–263). New York: ACM.

    Chapter  Google Scholar 

  11. Lee, S.-J., Belding-Royer, E. M., & Perkins, C. E. (2003). Scalability study of the ad hoc on-demand distance vector routing protocol. International Journal of Network Management, 13(2), 97–114.

    Article  Google Scholar 

  12. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., & Anderson, J. (2002). Wireless sensor networks for habitat monitoring. In ACM international workshop on wireless sensor networks and applications (WSNA 2002) (pp. 88–97).

  13. Nasipuri, A., Casta, N. R., & Das, S. R. (2001). Performance of multipath routing for on-demand protocols in mobile ad hoc networks. Mobile Networks and Applications, 6(4), 339–349.

    Article  Google Scholar 

  14. Spivak, M. (2006). Calculus (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  15. Stoianov, I., Nachman, L., Madden, S., & Tokmouline, T. (2007). Pipenet: a wireless sensor network for pipeline monitoring. In IPSN ’07: Proceedings of the 6th international conference on information processing in sensor networks (pp. 264–273). New York: ACM.

    Chapter  Google Scholar 

  16. Wei Tseng, H., Yang, S.-H., Chuang, P.-Y., Wu, H.-K., & Chen, G.-H. (2004). An energy consumption analytic model for a wireless sensor mac protocol. In Vehicular technology conference (pp. 4533–4537).

  17. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., & Lees, J. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25.

    Article  Google Scholar 

  18. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient mac protocol for wireless sensor networks. In Infocom (pp. 1567–1576).

  19. Zhong, L. C. (2004). A unified data-link energy model for wireless sensor networks. PhD thesis, Chair-Jan M. Rabaey.

  20. Zimmerling, M., Dargie, W., & Reason, J. (2007). Energy-efficient routing in linear wireless sensor networks. In The fourth IEEE international conference on mobile ad-hoc and sensor systems.

  21. Zimmerling, M., Dargie, W., & Reason, J. M. (2008). Localized power-aware routing in linear wireless sensor networks. In CASEMANS ’08: Proceedings of the 2nd ACM international conference on context-awareness for self-managing systems (pp. 24–33). New York: ACM.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waltenegus Dargie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dargie, W., Chao, X. & Denko, M.K. Modelling the energy cost of a fully operational wireless sensor network. Telecommun Syst 44, 3–15 (2010). https://doi.org/10.1007/s11235-009-9228-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-009-9228-z

Navigation