Skip to main content
Log in

A QoS-aware admission control scheme for bottleneck mitigation in Next-Generation Networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

To exploit Next-Generation Networks at their full potential, a crucial issue to overcome concerns the interoperability between high-capacity and low-capacity networks. Towards this direction, an admission policy is proposed, intended to be applied at the bottleneck nodes where traffic flows belonging to different QoS classes compete for bandwidth. Packet delay variation (jitter) is chosen as the main performance metric to diversify between traffic classes. A complex optimization problem is formulated and an approximation method is proposed, which provides competitive solutions. As its main contribution, this paper offers a method for mitigating interoperability at the bottleneck nodes with low complexity of implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Settembre, M., & Tardy, I. (2006). Interoperability issues for hybrid access and backhaul networks. Telektronikk, 102(2), 39–47.

    Google Scholar 

  2. Shen, G., Tucker, R., & Chae, C. (2007). Fixed mobile convergence architectures for broadband access: integration of EPON and WiMAX. IEEE Communications Magazine, 45(8), 44–50.

    Article  Google Scholar 

  3. Sarkar, S., Dixit, S., & Mukherjee, B. (2007). Hybrid wireless-optical broadband-access network (WOBAN): a review of relevant challenges. Journal of Lightwave Technology, 25(11), 3329–3340.

    Article  Google Scholar 

  4. Zhensheng, J., Jianjun, Y., Ellinas, G., & Chang, G. (2007). Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture. Journal of Lightwave Technology, 25(11), 3452–3471.

    Article  Google Scholar 

  5. Sarkar, S., Yen, H., Dixit, S., & Mukherjee, B. (2007). RADAR: Risk-and-delay aware routing algorithm in a hybrid wireless-optical broadband access network (WOBAN). In Proc. of the optical fiber communication conference and exposition and the national fiber optics engineers conference. OSA technical digest series (CD). Optical Society of America, Washington DC, paper OThM4.

    Google Scholar 

  6. Hu, J., Qian, D., Wang, T., & Cvijetic, M. (2008). Wireless intermediate frequency signal over passive optical networks: architecture and experimental performance evaluation. In Proc. of the national fiber optic engineers conference. OSA technical digest (CD). Optical Society of America, Washington DC, paper NThD4.

    Google Scholar 

  7. Kazovsky, L. G., Shaw, W. T., Gutierrex, D., Cheng, N., & Wong, S. W. (2007). Next generation optical access networks. Journal of Lightwave Technology, 25(11), 3428–3442.

    Article  Google Scholar 

  8. Milosavljevic, M., Shachaf, Y., Kourtessis, P., & Senior, J. M. (2009). Interoperability of GPON and WiMAX for network capacity enhancement and resilience. The Journal of Optical Networking, 8(3), 285–294.

    Article  Google Scholar 

  9. Berlemann, L., Hoymann, C., Hiertz, G. R., & Mangold, S. (2006). Coexistence and interworking of IEEE 802.16 and IEEE 802.11(e). In Proc. of the vehicular technology conference.

    Google Scholar 

  10. Gakhar, K. et al. (2005). IROISE: A new QoS architecture for IEEE 802.16 and IEEE 802.11e interworking. In Proc. of the 2nd international conference on broadband networks.

    Google Scholar 

  11. Frattasi, S. et al. (2003). Interworking between WLAN and WMAN: an ethernet-based integrated device. In Proc. of the 6th wireless personal multimedia conference (WPMC), Japan.

    Google Scholar 

  12. Kalle, R., Sagar, V., Kumar, S., Lele, A., & Das, D. (2008). A novel interface gateway architecture for seamless interoperability between 802.11e and 802.16e. In Proc. of the IEEE international conference on COMmunication System softWAre and middlewaRE (COMSWARE 2008), Bangalore, India.

    Google Scholar 

  13. Landry, R., & Stavrakakis, I. (1997). Study of delay jitter with and without peak rate enforcement. IEEE/ACM Transactions on Networking, 5(4), 543–553.

    Article  Google Scholar 

  14. Matragi, W., Sohraby, K., & Bisdikian, C. (1997). Jitter calculus in ATM networks: multiple nodes. IEEE/ACM Transactions on Networking, 5(1), 122–133.

    Article  Google Scholar 

  15. Brun, O., Bockstal, C., & Garcia, J. M. (2006). A simple formula for end-to-end jitter estimation in packet-switching networks. In Proc. of the ICN/ICONS/MCL, pp. 14–19.

    Google Scholar 

  16. Borden, M. (1995). Properties of CDV and its accumulation. ATM Forum Contribution.

  17. Randhawa, T., & Hardy, S. (2001). Network management in wired and wireless networks. The Springer international series in engineering and computer science. Kluwer Academic, Dordrecht.

    Google Scholar 

  18. Mitra, D., Rieman, M. I., & Wang, J. (1998). Robust dynamic admission control for unified cell and call QoS in statistical multiplexers. IEEE Journal on Selected Areas in Communications, 16(5), 692–707.

    Article  Google Scholar 

  19. Hyman, J. M., Lazar, A. A., & Pacifici, G. (1993). A separation principle between scheduling and admission control for broadband switching. IEEE Journal on Selected Areas in Communications, 11(4), 605–616.

    Article  Google Scholar 

  20. Dziong, Z., & Mason, L. G. (1996). Fair-efficient call admission control policies for broadband networks—a game theoretic framework. IEEE/ACM Transactions on Networking, 4(1), 123–136.

    Article  Google Scholar 

  21. Kalyanasundaram, S., Chong, E., & Shroff, N. (2001). Admission control schemes to provide class-level QoS in multi-class networks. Computer Networks, 35(2), 307–326.

    Article  Google Scholar 

  22. Kalyanasundaram, S., Chong, E., & Shroff, N. (2002). Optimal resource allocation in multi-class networks with user-specified utility functions. Computer Networks, 38(5), 613–630.

    Article  Google Scholar 

  23. Cuevas, M. (2005). Admission control and resource reservation for session-based applications in next generation networks. BT Technology Journal, 23(2), 130–145.

    Article  Google Scholar 

  24. Mignanti, S., DiGiorgio, A., & Suraci, V. (2009). A model based RL admission control algorithm for next generation networks. In Proc. of the 2009 eighth international conference on networks, France.

    Google Scholar 

  25. Jun, K., & Kang, S. (2005). Call admission control for next generation cellular networks using on demand round robin bandwidth sharing. In Proc. of the networking—ICN 2005, pp. 543–550.

    Chapter  Google Scholar 

  26. Falowo, O. E., & Chan, H. A. (2006). Fuzzy logic based call admission control for next generation wireless networks. In Proc. of the ISWCS ’06, pp. 574–578.

    Google Scholar 

  27. Salhani, M., Dhaou, R., & Beylot, A. (2009). QoS mapping and connection admission control in the WiMAX—DVB-RCS access network. In Proc. of the 4th ACM workshop on performance monitoring and measurement of heterogeneous wireless and wired networks, Spain.

    Google Scholar 

  28. Rong, B., Qian, Y., Kejie, L., Guizani, H., & Chen, M. (2008). Call admission control optimization in WiMAX networks. IEEE Transactions on Vehicular Technology 57(4), 2509–2522.

    Article  Google Scholar 

  29. Camara, D., & Filali, F. (2009). Scheduling and call admission control, a WiMax mesh networks view. In Guide to wireless mesh networks (pp. 449–469). London: Springer.

    Chapter  Google Scholar 

  30. Khemiri, S., Boussetta, K., Achir, N., & Pujolle, G. (2007). Optimal call admission control for an IEEE 802.16 wireless metropolitan area network. In Proc. of the NET-COOP 2007, Avignon, France.

    Google Scholar 

  31. Houeto, F., & Pierre, S. (2004). Characterization of jitter and admission control in multiservice networks. IEEE Communications Letters, 8(2), 125–127.

    Article  Google Scholar 

  32. Bianchi, G., Borgonovo, F., Capone, A., Fratta, L., & Petrioli, C. (2002). Endpoint admission control with delay variation measurements for QoS in IP networks. Computer Communication Review, 32(2), 61–69.

    Article  Google Scholar 

  33. Zhao, D., Shen, X., & Mark, J. (2002). QoS performance bounds and efficient connection admission control for heterogeneous services in wireless cellular networks. Wireless Networks, 8, 85–90.

    Article  Google Scholar 

  34. 3GPP TS 23.107, Quality of Service (QoS) concept and architecture.

  35. ITU-T Recommendation Y.1541 (2006). Network performance objectives for IP-based services.

  36. IEEE standard for local and metropolitan area networks Part 16 (2004). Air interface for fixed broadband wireless access systems.

  37. Altman, E. (2000). Applications of Markov decision processes in communication networks: a survey (Technical Report RR-3984).

  38. Puterman, M. L. (1994). Markov decision processes: discrete stochastic dynamic programming. New York: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Drakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drakos, M.P., Stassinopoulos, G., Sygkouna, I. et al. A QoS-aware admission control scheme for bottleneck mitigation in Next-Generation Networks. Telecommun Syst 52, 397–411 (2013). https://doi.org/10.1007/s11235-011-9455-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9455-y

Keywords

Navigation