Skip to main content
Log in

Optimized radii and excitations with concentric circular antenna array for maximum sidelobe level reduction using wavelet mutation based particle swarm optimization techniques

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, a Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach with Wavelet Mutation (PSOCFIWA-WM) is applied to the process of synthesizing three-ring Concentric Circular Antenna Arrays (CCAA) without and with central element feeding, focused on maximum sidelobe level reductions. Sidelobe level (SLL) is a critical radiation pattern parameter in the task of reducing background noise and interference in the most recent wireless communication systems. To improve the radiation pattern with maximum SLL reduction, an optimum set of antenna element parameters as excitation weights and radii of the rings are to be developed. The extensive computational results show that the method of PSOCFIWA-WM provides a maximum sidelobe level reduction of 96.06% with respect to the uniformly excited case for the particular CCAA containing 4, 6, and 8 numbers of elements in the three successive rings along with central element feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Munson, D. C., O’Brian, J. D., & Jenkins, W. K. (1983). A tomographic formulation of spot-light mode synthetic aperture radar. Proceedings of the IEEE, 71, 917–925.

    Article  Google Scholar 

  2. Peterson, P. M., Durlach, N. I., et al. (1987). Multimicrophone adaptive beamforming for interference reduction in hearing aids. Journal of Rehabilitation Research and Development, 24(4), 103–110.

    Google Scholar 

  3. Ioannides, P., & Balanis, C. A. (2005). Uniform circular arrays for smart antennas. IEEE Antennas & Propagation Magazine, 47(4), 192–206.

    Article  Google Scholar 

  4. Ioannides, P., & Balanis, C. A. (2005). Uniform circular and rectangular arrays for adaptive beamforming applications. IEEE Antennas and Wireless Propagation Letters, 4, 351–354.

    Article  Google Scholar 

  5. Collin, R. E. (1985). Antenna and radio-wave propagation. New York: McGraw-Hill.

    Google Scholar 

  6. Compton, R. T. (1978). An adaptive array in a spread-spectrum communication system. Proceedings of the IEEE, 66, 289–298.

    Article  Google Scholar 

  7. Haupt, R. L. (2008). Optimized element spacing for low sidelobe concentric ring arrays. IEEE Transactions on Antennas and Propagation, 56(1), 266–268.

    Article  Google Scholar 

  8. Dessouky, M., Sharshar, H., & Albagory, Y. (2006). Efficient sidelobe reduction technique for small-sized concentric circular arrays. Progress in Electromagnetics Research, 65, 187–200.

    Article  Google Scholar 

  9. Li, Y., Ho, K. C., & Kwan, C. (2004). A novel partial adaptive broad-band beamformer using concentric ring array. In Proc. IEEE ICASSP’04 (pp. 177–180), Montreal, Quebec, Canada, May 2004.

    Google Scholar 

  10. Fletcher, P., & Darwood, P. (1998). Beamforming for circular and semicircular array antennas for low-cost wireless lan data communications systems. IEE Proceedings. Microwaves, Antennas and Propagation , 145(2), 153–158.

    Article  Google Scholar 

  11. Bogdan, L., & Comsa, C. (2003). Analysis of circular arrays as smart antennas for cellular networks. In Proc. IEEE int. symp. signals, circuits and systems.’03 (Vol. 2, pp. 525–528).

    Google Scholar 

  12. Mahmoud, K. R., Eladawy, M. I., Bansal, R., Zainud-Deen, S. H., & Ibrahem, S. M. M. (2008). Analysis of uniform circular arrays for adaptive beamforming applications using particle swarm optimization algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 18(1), 42–52.

    Article  Google Scholar 

  13. Stearns, C., & Stewart, A. (1965). An investigation of concentric ring antennas with low sidelobes. IEEE Transactions on Antennas and Propagation, 13(6), 856–863.

    Article  Google Scholar 

  14. Das, R. (1966). Concentric ring array. IEEE Transactions on Antennas and Propagation, 14(3), 398–400.

    Article  Google Scholar 

  15. Goto, N., & Cheng, D. K. (1970). On the synthesis of concentric-ring arrays. Proceedings of the IEEE, 58(5), 839–840.

    Article  Google Scholar 

  16. Biller, L., & Friedman, G. (1973). Optimization of radiation patterns for an array of concentric ring sources. IEEE Transactions on Audio and Electroacoustics, 21(1), 57–61.

    Article  Google Scholar 

  17. Huebner, M. D. A. (1978). Design and optimization of small concentric ring arrays. In Proc. IEEE AP-S Symp (pp. 455–458).

    Google Scholar 

  18. Yan, K.-K., & Lu, Y. (1997). Sidelobe reduction in array-pattern synthesis using genetic algorithm. IEEE Transactions on Antennas and Propagation, 45(7), 1117–1122.

    Article  Google Scholar 

  19. Holtrup, M. G., Margulnaud, A., & Citerns, J. (2001). Synthesis of electronically steerable antenna arrays with element on concentric rings with reduced sidelobes. In Proc. IEEE AP-S Symp (pp. 800–803).

    Google Scholar 

  20. Panduro, M. A., Mendez, A. L., Dominguez, R., & Romero, G. (2006). Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. AEU. International Journal of Electronics and Communications, 60, 713–717.

    Article  Google Scholar 

  21. Kennedy, J., & Eberhard, R. C. (1995). Particle swarm optimization. In Proc. of IEEE int’l conf. on neural networks (pp. 1942–1948), Piscataway, NJ, USA.

    Google Scholar 

  22. Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: developments, applications and resources, evolutionary computation. In Proceedings of the 2001 congress on evolutionary computation (Vol. 1, pp. 81–86).

    Google Scholar 

  23. Ho, S. L., Yang, S., Ni, G., Lo Edward, W. C., & Wong, H. C. (2005). A particle swarm optimization-based method for multiobjective design optimizations. IEEE Transactions on Magnetics, 41(5), 1756–1759.

    Article  Google Scholar 

  24. Mandal, D., Ghoshal, S. P., & Bhattacharjee, A. K. (2009). Comparative optimal designs of non-uniformly excited concentric circular antenna array using evolutionary optimization techniques. In IEEE second international conference on emerging trends in engineering and technology, 2009, ICETET’09 (pp. 619–624).

    Chapter  Google Scholar 

  25. Mandal, D., Ghoshal, S. P., & Bhattacharjee, A. K. (2010). Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique. Journal of Infrared, Millimeter, and Terahertz Waves, 31(6), 667–680.

    Google Scholar 

  26. Shihab, M., Najjar, Y., Dib, N., & Khodier, M. (2008). Design of non-uniform circular antenna arrays using particle swarm optimization. Journal of Electrical Engineering, 59(4), 216–220.

    Google Scholar 

  27. Roy, R., & Ghoshal, S. P. (2008). A novel crazy swarm optimized economic load dispatch for various types of cost functions. International Journal of Electrical Power & Energy Systems, 30(4), 242–253.

    Article  Google Scholar 

  28. Ling, S. H., Yeung, C. W., Chan, K. Y., Iu, H. H. C., & Leung, F. H. F. (2007). A new hybrid particle swarm optimization with wavelet theory based mutation operation. In Proc. 2007 IEEE congress on evolutionary computation (CEC 2007) Singapore, 25–28 September 2007. (pp. 1977–1984).

    Chapter  Google Scholar 

  29. Yeung, C. W., Ling, S. H., Chan, Y. H., Ling, S. H., & Leung, F. H. F. (2008). Restoration of half-toned color-quantizes images using particle swarm optimization with wavelet mutation. In Proc. IEEE TENCON (pp. 19–21), Nov. 2008.

    Google Scholar 

  30. Ling, S. H., Iu, H. H. C., Leung, F. H. F., & Chan, K. Y. (2008). Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging. IEEE Transactions on Industrial Electronics, 55(9), 3447–3460.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durbadal Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, D., Ghoshal, S.P. & Bhattacharjee, A.K. Optimized radii and excitations with concentric circular antenna array for maximum sidelobe level reduction using wavelet mutation based particle swarm optimization techniques. Telecommun Syst 52, 2015–2025 (2013). https://doi.org/10.1007/s11235-011-9482-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9482-8

Keywords

Navigation