Skip to main content
Log in

UWB for multi-gigabit/s communications beyond 60 GHz

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The recently allocated 71–76 GHz and 81–86 GHz bands provide an opportunity for realizing Line Of Sight (LOS) links for directional point-to-point “last mile” applications. An efficient use of this spectrum may allow wireless to finally “catch up” with wires, leading to systems such as “multi-Gigabit wireless Ethernet,” and “wireless fiber.” However, the transmission at such a frequency range is characterized by several additional challenges compared to lower frequency bands, from both technological and propagation point of view, which makes difficult to use them efficiently. In this scenario, IR (Impulse Radio) UWB (Ultra Wide Band) technology might offer some more degrees of freedom for the design of a highly integrated and low cost transceiver. This work has at its core the design and BER (Bit Error Rate) performance evaluation of an IR-UWB architecture based on an 85 GHz up-conversion stage of train of Gaussian pulses having duration lower than 1 ns. Finally, we compare performance of this architecture with the ones of a more traditional continuous wave communications system with FSK (Frequency Shift Keying) modulation. Simulation results show that BER performance, in presence of RF non-linearities, for an IR-UWB transceiver architecture operating at 85 GHz (with same data rate and bandwidth) are better than a coherent BFSK scheme working in a similar scenario. Finally, some conclusions are reported, pointing out the UWB antenna design and the future works related to the modeling of the channel at frequencies beyond 60 GHz and the implementation of the test bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yong, S. K., & Chong, C. C. (2007). An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges. Eurasip Journal on Wireless Communications and Networking, 2007(1).

  2. Hirata, A., Kosugi, T., Takahashi, H., Yamaguchi, R., Nakajima, F., Furuta, T., Ito, H., Sugahara, H., Sato, Y., & Nagatsuma, T. (2006). 120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission. IEEE Transaction on Microwave Theory Technology, 54(5), 1937–1044.

    Article  Google Scholar 

  3. Dyadyuk, V., Bunton, J. D., Pathikulangara, J., Kendall, R., Sevimli, O., Stokes, L., & Abbott, D. A. (2007). A multigigabit millimeter-wave communication system with improved spectral efficiency. IEEE Transaction on Microwave Theory Technology, 55(12), 2813–2821.

    Article  Google Scholar 

  4. Piesiewicz, R., Jacob, M., Koch, M., Schoebel, J., & Kurner, T. (2008). Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments. IEEE Journal of Selected Topics in Quantum Electronic, 14(2), 412–430.

    Google Scholar 

  5. International Telecommunication Union (ITU), “Radio Regulations”, edition of 2008.

  6. ETSI DTR/ERM-RM-049 (2006). Electromagnetic compatibility and radio spectrum matters (ERM); System reference document; Technical characteristics of multiple gigabit wireless systems in the 60 GHz range.

  7. ERC Recommendation 12-09 (2004). Radio frequency channel arrangement for fixed service systems operating in the band 57.0–59.0 GHz which do not require frequency planning. The Hague 1998 revised Stockholm, October 2004.

  8. ECC Recommendation 05-02 (2009). Use of the 64–66 GHz frequency band for fixed service, February 2009.

  9. ECC Recommendation (09)01 (2009). Use of the 57–64 GHz frequency band for point-to-point fixed wireless systems, January 2009.

  10. ERC Recommendation 70-03 (2009). Relating to the use of short range devices (SRD), Annex 3 Band E, Wideband Data Transmission systems 57–66 GHz, February 2009.

  11. Federal Communication Commissions (2004). Code of federal regulation, title 47 Telecommunication, Chapter 1, Part 15.255, October 2004.

  12. ECC Recommendation 05-07 (2009). Radio frequency channel arrangements for fixed service systems operating in the bands 71–76 GHz and 81–86 GHz, February 2009.

  13. Bohlander, R. A., & McMillan, R. W. (1985). Atmospheric effects on near millimeter wave propagation. Proceedings IEEE, 73(1), 49–60.

    Article  Google Scholar 

  14. Liebe, H. J. (1985). An updated model for millimeter wave propagation in moist air. Radio Science, 20(5), 1069–1089.

    Article  Google Scholar 

  15. Liebe, H. J. (1989). MPM—An atmospheric millimeter-wave propagation model. International Journal of Infrared and Millimeter Waves, 10(6), 631–650.

    Article  Google Scholar 

  16. Liebe, H. J., Manabe, T., & Hufford, G. A. (1989). Millimeter-wave attenuation and delay rates due to fog/cloud conditions. IEEE Transactions on Antennas and Propagation, 37(12), 1617–1623.

    Article  Google Scholar 

  17. Liebe, H. J., Hufford, G. A., & Manabe, T. (1991). A model for the complex permittivity of water at frequencies below 1 THz. International Journal of Infrared and Millimeter Waves, 12(7), 659–675.

    Article  Google Scholar 

  18. Liebe, H. J. (1983). Atmospheric EHF window transparencies near 35, 90, 140 and 220 GHz. IEEE Transactions on Antennas and Propagation, 31(1), 127–135.

    Article  Google Scholar 

  19. Pinhasi, Y., Yahalom, A., Harpaz, O., & Vilner, G. (2004). Study of ultra wideband transmission in the extremely high frequency (EHF) band. IEEE Transactions on Antennas and Propagation, 52(11), 2833–2842.

    Article  Google Scholar 

  20. Pinhasi, Y., & Yahalom, A. (2005). Spectral characteristics of gaseous media and their effects on propagation of ultra-wideband radiation in the millimeter wavelengths. Journal of Non-Crystalline Solids, 351(33–36), 2925–2928.

    Article  Google Scholar 

  21. Pinhasi, Y., Yahalom, A., & Pinhasi, G. A. (2009). Propagation analysis of ultra-short pulses in resonant dielectric media. Journal of the Optical Society of America B, 26(12), 2404–2413.

    Article  Google Scholar 

  22. Howarth, J. A., Weste, N., Harrison, J., Davis, L. M., & Parker, A. Towards a 60 GHz gigabit system-on-chip. Wireless world research forum.

  23. Razavi, B. (2006). A 60-GHz CMOS direct conversion receiver front end. IEEE Journal on Solid State Circuits, 41, 17–22.

    Article  Google Scholar 

  24. Doan, C. H. et al. (2005). A 60-GHz downconverting CMOS single-gate mixer. RFIC digital technical papers, pp. 163–166.

  25. Mitomo, T., Fujimoto, R., Ono, N., Tachibana, R., Hoshino, H., Yoshihara, Y., Tsutsumi, Y., & Seto, I. (2008). A 60-GHz CMOS receiver front-end with frequency synthesizer. IEEE Journal on Solid State Circuits, 43(4).

  26. Rieh, J. S. et al. (2002). SiGe HBTs with cutoff frequency of 350 GHz. In International electron devices meeting.

    Google Scholar 

  27. Kawano, Y. et al. (2006). Sub-10 ps pulse generator with biphase modulator function in 0.13 μm InP HEMT. In Proceedings of the 3rd European radar conference (pp. 342–345), September 2006.

    Google Scholar 

  28. Nakasha, Y. et al. (2008). A W-band wavelength generator using 0.13 μm InP HEMTs for multigigabit communications based on ultra-wideband impulse radio. In International microwave symposium, June 2008.

    Google Scholar 

  29. Nakasha, Y., Kawano, Y., Suzuki, T., Ohki, T., Takahashi, T., Makiyama, K., Hirose, T., & Hara, N. (2008). A W-band wavelet generator using a 0.13-μm InP HEMTs for multigigabit communications based on ultra-wideband impulse radio. In 2008 IEEE MTT-S international microwave symposium (Vol. 15, pp. 109–112), June 2008. Issue 15–20.

    Chapter  Google Scholar 

  30. Scholtz, R. A., & Win, M. Z. (1997). Impulse radio. In Proceedings of 8th international symposium on personal, indoor and mobile radio communications (PIMRC ’97) (pp. 245–267), Helsinki, September 1997.

    Google Scholar 

  31. O’Donnell, M. Chen, Wang, S., & Brodersen, R. W. (2002). An integrated, low-power, ultra-wideband transceiver architecture for low-rate, indoor wireless systems. In IEEE CAS workshop on wireless communications and networking, Pasadena, September 2002.

    Google Scholar 

  32. Gangyaokuang, C., & Zhonglianglu, S. (1995). A way of multichannel AID for UWB signal. In IEEE national aerospace & electronics conference (NAECON) (Vol. 1, pp. 206–209), May 22–26, 1995.

    Google Scholar 

  33. Lee, H. J., & Ha, D. S. (2003). Frequency domain approach for CMOS ultra-wideband radios. In IEEE computer society annual symposium on VLSI 2003 (pp. 236–237), February 20–21, 2003.

    Google Scholar 

  34. Tanaka, A. et al. (2006). A 1.1v 3.1-to-9.5GHz MB-OFDM UWB transceiver in 90 nm CMOS. In IEEE international solid state circuits conference (ISSCC) (Vol. 49, pp. 120–121), February 2006.

    Google Scholar 

  35. Sandner, C. et al. (2006). A WidMedia/MBOA-compliant CMOS RF transceiver for UWB. In IEEE international solid-state circuits conference (ISSCC) (Vol. 49, pp. 122–123), February 2006.

    Google Scholar 

  36. Chen, M. S., & Brodersen, R. W. Implementation considerations for a sub sampling impulse radio. Berkley Wireless Research Centre.

  37. Chen, M. S., & Brodersen, R. W. A Subsampling radio architecture for 3 10 GHz UWB. Berkley Wireless Research Centre.

  38. Biradar, G. S. et al. (2009). Frequency and time hopping PPM UWB multiple access communication scheme. Journal of Communications, 4(1).

  39. Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent non linear models of TWT amplifiers. IEEE Transaction on Communications, 29(11).

  40. FuenZalida, J. C., Shimbo, O., & Cook, W. L. (1973). Time domain analysis of intermodulation effects caused by nonlinear amplifiers. COMSAT Technical Review, 3(2).

  41. Andrea, A. N., Lottici, V., & Reggiannini, R. (1996). RF power amplifier linearization through amplitude and phase distortion. IEEE Transactions on Communications, 44(11).

  42. Shimbo, O. (1971). Effects of intermodulation, AM-PM conversion, and additive noise in multicarrier TWT systems. Proceedings of IEEE, 59(2), 230–238.

    Article  Google Scholar 

  43. Cavers, J. K. (1994). The effects of data modulation format on intermodulation power in nonlinear amplifiers. IEEE Transactions on Communications, pp. 489–493, March 1994.

  44. Rutman, J., & Gauvage, G. (1974). Measurement of frequency stability and frequency domains via filtering of phase noise. IEEE Transactions Instrument Measurements, Vol. IM-23, December 1974.

  45. Luy, J. F., & Russer, P. (Eds.) (1994). Future applications in silicon-based millimeter wave devices. Berlin: Springer.

    Google Scholar 

  46. Bock, J. et al. (2004). SiGe bipolar technology for automotive radar applications. In Bipolar/BiCMOS circuits and technology meeting (pp. 84–87).

    Google Scholar 

  47. Racanalli, M., & Kempf, P. (2005). SiGe BICMOS technology for RF circuit applications. IEEE Transactions on Electron Devices, 52(7), 1259–1270.

    Article  Google Scholar 

  48. Freeman, G. et al. (2003). Transistor design and application considerations for > 200 GHz SiGe HBTs. IEEE Transactions on Electron Devices, 50(3), 645–655.

    Article  Google Scholar 

  49. Haaren, B. V. et al. (1998). Low-frequency noise properties of SiGe HBT’s and application to ultra-low phase noise oscillators. IEEE Transactions on Microwave Theory and Techniques, 46, 647–652.

    Article  Google Scholar 

  50. Gris, M. (2000). Wideband low phase noise push-push VCO. Applied Microwave & Wireless (pp. 28–32), January 2000.

  51. Chang, H. C. et al. (1997). Phase noise in coupled oscillators: theory and experiment. IEEE Transactions on Microwave Theory and Techniques, 45, 604–615.

    Article  Google Scholar 

  52. Guo, N., Qiu, R. C., Shaomin, S. M., & Takahashi, K. (2007). 60 GHz millimeter-wave radio: principle, technology, and new results. Eurasip Journal on Wireless Communications and Networking, 2007(1).

  53. Sacchi, C., Musso, M., Gera, G., Regazzoni, C., De Natale, F. G. B., Jebril, A., & Ruggieri, M. (2005). An efficient carrier recovery scheme for high-bit-rate W-band satellite communication systems. In IEEE Aerospace Conference 2005.

    Google Scholar 

  54. Zhang, Y., Tang, X., & Feng, Z. (2002). The investigation of W-band solid- state frequency sources. In IEEE third international conference on microwave and millimeter wave technology.

    Google Scholar 

  55. Lee, T. H., & Hajimiri, A. (2000). Oscillator phase noise: a tutorial. IEEE Journal of Solid State Circuits, 35(3), 326–336.

    Article  Google Scholar 

  56. Holmes, J. K. (1981). Coherent spread spectrum systems. Chichester: Wiley.

    Google Scholar 

  57. Alexovich, J. R., & Gagliardi, R. M. (1990). The effect of phase noise on noncoherent digital communications. IEEE Transactions on Communications, 38(9), 1539–1548.

    Article  Google Scholar 

  58. Strangeway, R., Koryu-Ishii, T., & Hide, J. S. (1988). Low-phase-noise gun diode oscillator design. IEEE Transactions on Microwave Theory and Techniques, 36(4), 792–794.

    Article  Google Scholar 

  59. Smith, G. M., & Lesurf, J. C. G. (1992). Stabilization of millimeter wave oscillators. In Proceedings of IEEE colloquium on characterization of oscillators and measurement (pp. 6/1–6/5), London (UK).

    Google Scholar 

  60. Jingfu, B., Songbai, H., Yue, S., & Yu, W. Low noise W-band phase locked loops. In Proceedings of 1997 IEEE Asia Pacific microwave conference (pp. 321–323).

  61. Bonifazi, C., Ruggieri, M., & Paraboni, A. (2002). The DAVID mission in the heritage of the SIRIO and ITALSAT satellites. IEEE Transaction on Aerospace and Electronic System, 38(4), 1371–1376.

    Article  Google Scholar 

  62. Chen, Z. N. (2007). UWB Antennas: design and applications. In International conference on information, communications and signal processing (ICICS) 2007, Singapore, December 10–13, 2007.

    Google Scholar 

  63. Wu, X. H., Chen, Z. N., & Chia, M. Y. W. Note on antenna design in UWB wireless communication systems. Dept. of Radio Systems, Institute for Infocomm Research – Dept of Electrical and Computer Engineering.

  64. Chen, Z. N. et al. (2004). Considerations for source pulses and antennas in UWB radio systems. IEEE Transactions on Antennas and Propagation, 52(7).

  65. Rambabu, K., Tan, A. E., Chan, K. K., & Chia, M. Y. (2009). Estimation of antenna effect on ultra-wideband pulse shape in transmission and reception. IEEE Transactions on Electromagnetic Compatibility, 51(3), 604–610.

    Article  Google Scholar 

  66. Wiesbeck, W., Adamuik, G., & Sturm, C. (2009). Basic properties and design principles of UWB antennas. Proceedings of the IEEE, 97(2), 372–385.

    Article  Google Scholar 

  67. Xia, H. H., Bartoni, H. L., Maciel, L. L., Linday-Stewart, A., & Rowe, R. (1993). Radio propagation characteristics of line-of-sight microcellular and personal communications. IEEE Transactions on Antennas and Propagation, 41(10), 1439–1447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cianca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stallo, C., Cianca, E., Mukherjee, S. et al. UWB for multi-gigabit/s communications beyond 60 GHz. Telecommun Syst 52, 161–181 (2013). https://doi.org/10.1007/s11235-011-9500-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9500-x

Keywords

Navigation