Skip to main content
Log in

Cost analysis of mobility protocols

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Increasing demand for mobility in wireless data network has given rise to various mobility management schemes. Most of the analysis on mobility protocols used Random Waypoint mobility model However, the analysis done earlier ignored some major costs, resulting in an incomplete estimation and used random waypoint model which fails to represent realistic movement pattern. In this paper, we have developed an analytical cost model considering all possible costs related to mobility management, and have used city section mobility model, a realistic mobility model, to compute the total costs of two mobility protocols: HIMPv6 and SIGMA. We have defined two novel performance metrics, normalized overhead and efficiency, for mobility protocols based on the signaling costs and used them to evaluate the performance of SIGMA and HMIPv6 protocols varying network size, mobility rate and traffic rate. Results show that the total cost of SIGMA is much less than HMIPv6 due to the higher cost of packet tunneling, even though the mobility signaling cost of SIGMA is higher than HMIPv6. Moreover, mobility signaling costs of both the protocols using city model and random waypoint model are found to be much different, demonstrating the fact that random waypoint model cannot be used as an approximation to a realistic scenario. The analytical framework presented in this paper can be used by the network professionals to estimate amount of load on the network due to mobility protocols and compare them based on the proposed performance metrics to select the best protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, D., Perkins, C. E., & Arkko, J. (2004). Mobility support in IPv6. IETF RFC 3775, June.

  2. Soliman, H., Castelluccia, C., Malki, K. E., & Bellier, L. (2008). Hierarchical Mobile IPv6 mobility management (HMIPv6). IETF RFC 5380, Oct.

  3. Fu, S., & Atiquzzaman, M. (2006). SIGMA: a transport layer handover protocol for mobile terrestrial and space networks. In e-Business and telecommunication networks (pp. 41–52). Berlin: Springer.

    Google Scholar 

  4. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2, 483–502.

    Article  Google Scholar 

  5. Davies, V. (2000). Evaluating mobility models within an ad hoc network. MS thesis, Colorado School of Mines.

  6. Xie, J., & Akyildiz, I. (2002). A novel distributed dynamic location management scheme for minimizing signaling costs in Mobile IP. IEEE Transactions on Mobile Computing, 1(3), 163–175.

    Article  Google Scholar 

  7. Fu, S., & Atiquzzaman, M. (2005). Signaling cost and performance of SIGMA: a seamless handover scheme for data networks. Wireless Communications and Mobile Computing, 5(7), 825–845.

    Article  Google Scholar 

  8. Reaz, A. S., Chowdhury, P. K., & Atiquzzaman, M. (2006). Signaling cost analysis of SINEMO: Seamless End-to-End Network Mobility. In First ACM/IEEE international workshop on mobility in the evolving Internet architecture, San Francisco, CA, Dec. 01.

    Google Scholar 

  9. Makaya, C., & Pierre, S. (2008). An analytical framework for performance evaluation of IPv6-based mobility management protocols. IEEE Transactions on Wireless Communications, 7(3), 972–983.

    Article  Google Scholar 

  10. Hossain, M. S., & Atiquzzaman, M. (2009). Signaling cost analysis of mobility protocols using city section mobility model. In 2nd International conference on computer science and application, Korea, Dec. 10–12.

    Google Scholar 

  11. Diab, A., Mitschele-Thiel, A., & Liers, F. (2008). Estimation of the cost resulting from mobility management protocols using a generic mathematical model. In Proceedings of the 11th ACM international conference on modeling, analysis, and simulation of wireless and mobile systems, Vancouver, BC, Canada, Oct. 27–31.

    Google Scholar 

  12. Munasinghe, K. S., & Jamalipour, A. (2008). Analysis of signaling cost for a roaming user in a heterogeneous mobile data network. In IEEE Globecom, New Orleans, LA, Nov. 26–30.

    Google Scholar 

  13. Lee, J.-H., Gundavelli, S., & Chung, T.-M. (2009). A performance analysis on route optimization for Proxy Mobile IPv6. In IEEE international conference on communications, ICC 2009, Dresden, Germany, June 14–18.

    Google Scholar 

  14. Xie, J., & Narayanan, U. (2010). Performance analysis of mobility support in IPv4/IPv6 mixed wireless networks. IEEE Transactions on Vehicular Technology, 59(2).

  15. Galli, S., McAuley, A., & Morera, R. (2004). An analytical approach to the performance evaluation of mobility protocols: the overall mobility cost case. In IEEE international symposium on personal, indoor and mobile radio communications (PIMRC), Barcelona, Spain, Sept. 5–8.

    Google Scholar 

  16. Singh, B. (2008). Signaling cost analysis in mobile IP networks. In IET Conference on wireless, mobile and multimedia networks, Mumbai, India, Jan. 11–12.

    Google Scholar 

  17. Lee, J.-H., Ernst, T., & Chung, T.-M. (2010). Cost analysis of IP mobility management protocols for consumer mobile devices. IEEE Transactions on Consumer Electronics, 56(2).

  18. Hossain, M. S., & Atiquzzaman, M. (2009). Stochastic properties and application of city section mobility model. In IEEE global communications conference (GLOBECOM), Honolulu, HI, Nov. 30–Dec. 4.

    Google Scholar 

  19. Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic properties of random waypoint mobility model. Wireless Networks, 10(5), 555–567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Atiquzzaman.

Additional information

The research reported in this paper was supported by NASA Grant NNX06AE44G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.S., Atiquzzaman, M. Cost analysis of mobility protocols. Telecommun Syst 52, 2271–2285 (2013). https://doi.org/10.1007/s11235-011-9532-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9532-2

Keywords

Navigation