Skip to main content

Advertisement

Log in

Framework for MIMO cross-layer secure communication based on STBC

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The wireless networks lack a physical boundary due to the broadcasting nature of wireless transmissions. The security has become a critical concern in the physical layer of wireless networks. Physical-layer security techniques are effective in resolving the boundary, efficiency and link reliability issues, but they can not be able to guarantee security with probability 1. In this work, we present a cross-layer security scheme for STBC system. By introducing a distort signal set the sender randomly flip-flops between the distort signal set and the orthogonal code set to confuse the attacker. The physical-layer security is enhanced as a result. In the proposed scheme the physical-layer may rely on upper-layer encryption techniques for security, which results in a cross-layer security scheme. Our approach can guarantee enhanced security with probability 1 in the wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 29, 656–715.

    Google Scholar 

  2. Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journal, 54(10), 1355–1387.

    Google Scholar 

  3. Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(5), 339–348.

    Article  Google Scholar 

  4. Hero, A. O. (2003). Secure space-time communication. IEEE Transactions on Information Theory, 49(12), 3235–3249.

    Article  Google Scholar 

  5. Koorapaty, H., Hassan, A. A., & Chennakeshu, S. (2003). Secure information transmission for mobile radio. IEEE Transactions on Wireless Communications, 2(7), 52–55.

    Google Scholar 

  6. Zhang, Y., & Dai, H. (2009). A real orthogonal space-time coded UWB scheme for wireless secure communications. EURASIP Journal on Wireless Communications and Networking, 6(3), 1–8.

    Google Scholar 

  7. Hayking, S. (1994). Blind deconvolution. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  8. Hua, Y., An, S., & Xiang, Y. (2003). Blind identification of FIR MIMO channels by decorrelation subchannels. IEEE Transactions on Signal Processing, 51(5), 1143–1155.

    Article  Google Scholar 

  9. Li, X., & Hwu, J. (2007). Using antenna array redundancy and channel diversity for secure wireless transmissions. Journal of Communications, 2(3), 24–32.

    Article  Google Scholar 

  10. Kim, H., & Villasenor, J. D. (2008). Secure MIMO communications in a system with equal numbers of transmit and receive antennas. IEEE Communications Letters, 12(5), 386–388.

    Article  Google Scholar 

  11. Liu, T., & Shamai Shitz, S. (2009). A note on the secrecy capacity of the multiantenna wiretap channel. IEEE Transactions on Information Theory, 55(6), 2547–2553.

    Article  Google Scholar 

  12. Maurer, U. (1993). Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory, 39(3), 733–742.

    Article  Google Scholar 

  13. Bennett, C. H., Brassard, G., Crepeau, C., & Maurer, U. (1990). Generalized privacy amplification. IEEE Transactions on Information Theory, 41(6), 1915–1923.

    Article  Google Scholar 

  14. Nloch, M., Barros, J., & Rodrigues, M. R. D. (2008). Wireless information theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.

    Article  Google Scholar 

  15. Nawaz, Y., & Gong, G. (2008). WG: A family of stream ciphers with designed randomness properties. Information Sciences, 178(7), 1903–1916.

    Article  Google Scholar 

  16. Courtois, N. (2003). Higher order correlation attacks, XL algorithm and cryptanalysis of toyocrypt. In LNCS: Vol. 2587. Proceeding of ICISC 2002 (pp. 182–199). Berlin: Springer.

    Google Scholar 

  17. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 744–765.

    Article  Google Scholar 

  18. IEEE P802.11n (2009). Draft standard for information technology telecommunications and information exchange between systems local and metropolitan area networks specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. 802.11 Working Group of the 802 Committee.

  19. Alamouti, S. M. (1998). A simple transmitter diversity scheme for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  20. Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (1999). Space-time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths. IEEE Transactions on Communications, 17(2), 199–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, H., Gong, G., Lv, SC. et al. Framework for MIMO cross-layer secure communication based on STBC. Telecommun Syst 52, 2177–2185 (2013). https://doi.org/10.1007/s11235-011-9540-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9540-2

Keywords

Navigation