Skip to main content

Advertisement

Log in

Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation

Invited paper

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

As the Internet becomes increasingly important to all aspects of society, the consequences of disruption become increasingly severe. Thus it is critical to increase the resilience and survivability of future networks. We define resilience as the ability of the network to provide desired service even when challenged by attacks, large-scale disasters, and other failures. This paper describes a comprehensive methodology to evaluate network resilience using a combination of topology generation, analytical, simulation, and experimental emulation techniques with the goal of improving the resilience and survivability of the Future Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A roadmap for cybersecurity research (2009). Technical report, Department of Homeland Security (DHS).

  2. Africa: Population Density (2000). Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3). Palisades, NY: Center for International Earth Science Information Network (CIESIN), Columbia University. Available at http://sedac.ciesin.columbia.edu/gpw.

  3. Alderson, D., Doyle, J., Govindan, R., & Willinger, W. (2003). Toward an optimization-driven framework for designing and generating realistic Internet topologies. Computer Communication Review, 33(1), 41–46.

    Article  Google Scholar 

  4. Alderson, D., Li, L., Willinger, W., & Doyle, J. C. (2005). Understanding Internet topology: principles, models, and validation. IEEE/ACM Transactions on Networking, 13(6), 1205–1218.

    Article  Google Scholar 

  5. Antonopoulos, A. (1999). Metrication and performance analysis on resilience of ring-based transport network solutions. In GLOBECOM’99: global telecommunications conference (Vol. 2, pp. 1551–1555).

    Google Scholar 

  6. Avizienis, A. (1967). Design of fault-tolerant computers. AFIPS Conference Proceedings, 31, 733–743. Thompson Books 1967 fall joint computer conf.

    Google Scholar 

  7. Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33.

    Article  Google Scholar 

  8. Bacher, R., & Näf, U. (2003). Report on the blackout in Italy on 28 September 2003. (Report). Swiss Federal Office of Energy (SFOE).

  9. Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512 http://www.sciencemag.org/cgi/content/abstract/286/5439/509.

    Article  Google Scholar 

  10. Bassiri, B., & Heydari, S. S. (2009). Network survivability in large-scale regional failure scenarios. In Proceedings of the 2nd Canadian conference on computer science and software engineering (C3S2E) (pp. 83–87). New York: ACM Press.

    Google Scholar 

  11. Beaudry, M. (1978). Performance-related reliability measures for computing systems. IEEE Transactions on Computers, 27, 540–547.

    Article  Google Scholar 

  12. Bhandari, R. (1998). Survivable networks: algorithms for diverse routing. Norwell: Kluwer Academic.

    Google Scholar 

  13. Bhattacharjee, B., Calvert, K., Griffioen, J., Spring, N., & Sterbenz, J. P. G. (2006). Postmodern internetwork architecture (Technical Report ITTC-FY2006-TR-45030-01). Information and Telecommunication Center, 2335 Irving Hill Road, Lawrence, KS 66045-7612.

  14. Bouabene, G., Jelger, C., Tschudin, C., Schmid, S., Keller, A., & May, M. (2010). The autonomic network architecture (ANA). IEEE Journal on Selected Areas in Communications, 28(1), 4–14.

    Article  Google Scholar 

  15. CAIDA: Cooperative Association for Internet Data Analysis (caida) (2009). http://www.caida.org/home/.

  16. Calvert, K., Doar, M., & Zegura, E. (1997). Modeling Internet topology. IEEE Communications Magazine, 35(6), 160–163.

    Article  Google Scholar 

  17. Calvert, K. L., Bhattacharjee, S., Zegura, E. W., & Sterbenz, J. P. G. (1998). Directions in active networks. IEEE Communications Magazine, 36(10), 72–78.

    Article  Google Scholar 

  18. Carlson, J. M., & Doyle, J. (1999). Highly optimized tolerance: a mechanism for power laws in designed systems. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60(2), 1412–1427.

    Article  Google Scholar 

  19. Center for International Earth Science Information Network (CIESIN) (2011). Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3): Population Density Grids. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University: http://sedac.ciesin.columbia.edu/gpw.

  20. Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. G. (2010). A comprehensive framework to simulate network attacks and challenges. In Proceedings of the 2nd IEEE/IFIP international workshop on reliable networks design and modeling (RNDM), Moscow, Russia, pp. 538–544.

    Google Scholar 

  21. Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. G. (2011). Modelling communication network challenges for future internet resilience, survivability, and disruption tolerance: a simulation-based approach. Telecommunication Systems (in this issue).

  22. Cgal (2011). Computational Geometry Algorithms Library. http://www.cgal.org.

  23. Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: laws generators, and algorithms. ACM Computing Surveys, 38(1), 2.

    Article  Google Scholar 

  24. Chen, Q., Chang, H., Govindan, R., & Jamin, S. (2002). The origin of power laws in Internet topologies revisited. In Proceedings of the 21st annual joint conference of the IEEE computer and communications societies (INFOCOM) (Vol. 2, pp. 608–617).

    Google Scholar 

  25. Cherukuri, R., Liu, X., Bavier, A., Sterbenz, J., & Medhi, D. (2011). Network virtualization in GpENI: framework, implementation & integration experience. In IEEE/IFIP ManFI, Dublin, Ireland, pp. 1216–1223.

    Google Scholar 

  26. Clark, D., Sollins, K., Wroclawski, J., Katabi, D., Kulik, J., Yang, X., Braden, R., Faber, T., Falk, A., Pingali, V., Handley, M., & Chiappa, N. (2003). New arch: future generation, Internet architecture (Technical report). DARPA, MIT, ISI.

  27. Clark, D. D., Wroclawski, J., Sollins, K. R., & Braden, R. (2005). Tussle in cyberspace: defining tomorrow’s Internet. IEEE/ACM Transactions on Networking, 13(3), 462–475.

    Article  Google Scholar 

  28. Cowie, J. Lights Out in Rio (2009). http://www.renesys.com/blog/2009/11/lights-out-in-rio.shtml.

  29. Cowie, J. Japan Quake (2011). http://www.renesys.com/blog/2011/03/japan-quake.shtml.

  30. Cowie, J. H., Ogielski, A. T., Premore, B., Smith, E. A., & Underwood, T. (2003). Impact of the 2003 blackouts on Internet communications (Preliminary Report). Renesys Corporation (updated March 1, 2004).

  31. Cowie, J., Popescu, A., & Underwood, T. (2005). Impact of hurricane Katrina on Internet infrastructure (Report). Renesys

  32. Davis, T., Rogers, H., & Shays, C. (2006). Others: a failure of initiative: the final report of the select bipartisan committee to investigate the preparation for and response to hurricane Katrina (Congressional Report H.Rpt. 109-377). US House of Representatives, Washington, DC.

  33. Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., & Zambonelli, F. (2006). A survey of autonomic communications. ACM Transactions on Autonomous and Adaptive Systems, 1(2), 223–259.

    Article  Google Scholar 

  34. Doerr, C., & Hernandez, J. M. (2010). A computational approach to multi-level analysis of network resilience. In Proceedings of the third international conference on dependability (DEPEND) (pp. 125–132).

    Google Scholar 

  35. Doyle, J. C., Alderson, D. L., Li, L., Low, S., Roughan, M., Shalunov, S., Tanaka, R., & Willinger, W. (2005). The “robust yet fragile” nature of the Internet. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14 497–14,502.

    Article  Google Scholar 

  36. Dynamic resource allocation via GMPLS optical network (2009). http://dragon.maxgigapop.net/.

  37. Edwards, N. (1994). Building dependable distributed systems (Technical Report). APM.1144.00.02, ANSA.

  38. Ellinas, G., & Stern, T. (1996). Automatic protection switching for link failures in optical networks with bi-directional links. In Proceedings of the global telecommunications conference (GLOBECOM) (Vol. 1, pp. 152–156).

    Google Scholar 

  39. Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T., & Mead, N. R. (1999). Survivable network systems: an emerging discipline (Tech. Rep. CMU/SEI-97-TR-013). Software Engineering Institute, Carnegie Mellon University, PA.

  40. Ellison, R., Fisher, D., Linger, R., Lipson, H., Longstaff, T., & Mead, N. (1997). Survivable network systems: an emerging discipline (Tech. Rep. CMU/SEI-97-TR-013). Software Engineering Institute. Carnegie Mellon University.

  41. Emulab: Network emulation testbed (2009). http://www.emulab.net/.

  42. Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.

    Google Scholar 

  43. European information society (2010). http://ec.europa.eu/information_society/policy/nis/strategy/activities/ciip/index_en.htm.

  44. Fabrikant, A., Koutsoupias, E., & Papadimitriou, C. (2002). Heuristically optimized trade-offs: a new paradigm for power laws in the internet. In Lecture notes in computer science (pp. 110–122). Berlin: Springer.

    Google Scholar 

  45. Fall, K. (2003). A delay-tolerant network architecture for challenged Internets. In SIGCOMM ’03: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications (pp. 27–34). New York: ACM Press.

    Chapter  Google Scholar 

  46. Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the Internet topology. In SIGCOMM ’99: Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication (pp. 251–262). New York: ACM Press.

    Chapter  Google Scholar 

  47. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., & Zhang, L. (2001). IDMaps: a global Internet host distance estimation service. IEEE/ACM Transactions on Networking, 9(5), 525–540.

    Article  Google Scholar 

  48. Frank, H. (1974). Survivability analysis of command and control communications networks—part I. IEEE Transactions on Communications, 22(5), 589–595.

    Article  Google Scholar 

  49. Frank, H., & Frisch, I. (1970). Analysis and design of survivable networks. IEEE Transactions on Communication Technology, 18(5), 501–519.

    Article  Google Scholar 

  50. Fry, M., Fischer, M., Karaliopoulos, M., Smith, P., & Hutchison, D. (2010). Challenge identification for network resilience. In Proc. of the IEEE 6th EURO-NF conference on next generation internet (NGI) (pp. 1–8).

    Chapter  Google Scholar 

  51. Gan, Q., & Helvik, B. (2006). Dependability modelling and analysis of networks as taking routing and traffic into account. In NGI ’06: Proceedings of the conference on next generation Internet design and engineering.

    Google Scholar 

  52. Gay, F., & Ketelsen, M. (1979). Performance evaluation for gracefully degrading systems. In Proc. of the 9th annual int. symp. on fault tolerant computing (pp. 51–58).

    Google Scholar 

  53. GÉANT2 (2009). http://www.geant2.net/.

  54. Goodman, S., & Lin, H. (2007). Toward a safer and more secure cyberspace. National Academies Press.

  55. Grover, W. D. (2004). Mesh-based survivable networks. Upper Saddle River: Prentice Hall PTR Pearson.

    Google Scholar 

  56. Grover, W. D., & Stamatelakis, D. (1998). Cycle-oriented distributed preconfiguration: ring-like speed with mesh-like capacity for self-planning network restoration. In Proceeding of the IEEE international conference on communications (ICC’98), (Vol. 1, pp. 537–543).

    Google Scholar 

  57. Gush: GENI user shell (2009). http://gush.cs.williams.edu/trac/gush.

  58. Haddadi, H., Rio, M., Iannaccone, G., Moore, A., & Mortier, R. (2008). Network topologies: inference, modeling, and generation. IEEE Communications Surveys and Tutorials, 10(2), 48–69.

    Article  Google Scholar 

  59. Hagin, A. A. (1994). Performability, reliability, and survivability of communication networks: system of methods and models for evaluation. In Proceedings of the 14th international conference on distributed computing systems (pp. 562–573).

    Google Scholar 

  60. Hameed, M. A., Jabbar, A., Çetinkaya, E. K., & Sterbenz, J. P. (2010). Deriving network topologies from real world constraints. In Proceedings of IEEE GLOBECOM workshop on complex and communication networks (CCNet) (pp. 415–419).

    Google Scholar 

  61. Hariri, S., Qu, G., Dharmagadda, T., Ramkishore, M., & Raghavendra, C. S. (2003). Impact analysis of faults and attacks in large-scale networks. IEEE Security & Privacy, 01(5), 49–54.

    Article  Google Scholar 

  62. Heegaard, P. E., & Trivedi, K. S. (2009). Network survivability modeling. Computer Networks, 53(8), 1215–1234. Performance Modeling of Computer Networks: Special Issue in Memory of Dr. Gunter Bolch.

    Article  Google Scholar 

  63. Huslende, R. (1981). A combined evaluation of performance and reliability for degradable systems. In Proceedings of the ACM conference on measurement and modeling of computer systems (SIGMETRICS) (pp. 157–164). New York: ACM Press.

    Google Scholar 

  64. Jabbar, A. (2010). A framework to quantify network resilience and survivability. Ph.D. thesis, The University of Kansas, Lawrence, KS.

  65. Jabbar, A., Rohrer, J. P., Oberthaler, A., Çetinkaya, E. K., Frost, V., & Sterbenz, J. P. G. (2009). Performance comparison of weather disruption-tolerant cross-layer routing algorithms. In Proc. IEEE INFOCOM 2009. The 28th conference on computer communications (pp. 1143–1151).

    Chapter  Google Scholar 

  66. Jabbar, A., Shi, Q., Hameed, M., Çetinkaya, E. K., & Sterbenz, J. P. (2011). ResiliNets topology modelling. https://wiki.ittc.ku.edu/resilinets/Topology_Modelling.

  67. Jabbar, A., Narra, H., & Sterbenz, J. P. G. (2011). An approach to quantifying resilience in mobile ad hoc networks. In Proceedings of the 8th IEEE international workshop on the design of reliable communication networks (DRCN).

    Google Scholar 

  68. Jackson, A. W., Sterbenz, J. P. G., Condell, M. N., & Hain, R. R. (2002). Active network monitoring and control: the SENCOMM architecture and implementation. In DARPA active networks conference and exposition (DANCE), (pp. 379–393). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  69. Jamakovic, A., & Uhlig, S. (2007). Influence of the network structure on robustness. In IEEE international conference on networks (ICON) (pp. 278–283).

    Google Scholar 

  70. Kitamura, Y., Lee, Y., Sakiyama, R., & Okamura, K. (2007). Experience with restoration of Asia pacific network failures from Taiwan earthquake. IEICE Transactions on Communications, E90-B(11), 3095–3103.

    Article  Google Scholar 

  71. KMI Corporation (1999). North American fiberoptic long-haul routes planned and in place.

  72. Knight, J. C., Strunk, E. A., & Sullivan, K. J. (2003). Towards a rigorous definition of information system survivability. In Proceedings of the DARPA information survivability conference and exposition DISCEX III, Washington, DC, pp. 78–89.

    Chapter  Google Scholar 

  73. Kuhn, D. (1997). Sources of failure in the public switched telephone network. Computer, 30(4), 31–36.

    Article  Google Scholar 

  74. Lakhina, A., Byers, J., Crovella, M., & Matta, I. (2003). On the geographic location of Internet resources. IEEE Journal on Selected Areas in Communications, 21(6), 934–948.

    Article  Google Scholar 

  75. Laprie, J. C. (1994). Dependability: basic concepts and terminology. Draft, IFIP Working Group 10.4—Dependable Computing and Fault Tolerance.

  76. Laprie, J.-C. (2008). From dependability to resilience. In Proceedings of the 38th IEEE/IFIP international conference on dependable systems and networks (DSN).

    Google Scholar 

  77. Li, L., Alderson, D., Willinger, W., & Doyle, J. (2004). A first-principles approach to understanding the Internet’s router-level topology. Computer Communication Review, 34(4), 3–14.

    Article  Google Scholar 

  78. Liew, S., & Lu, K. (1992). A framework for network survivability characterization. In SUPERCOMM/ICC’92: proceedings of IEEE international conference on communications (ICC) (pp. 405–410).

    Google Scholar 

  79. Liew, S., & Lu, K. (1994). A framework for characterizing disaster-based network survivability. IEEE Journal on Selected Areas in Communications, 12(1), 52–58.

    Article  Google Scholar 

  80. Liscouski, B., & Elliot, W. J. (2004). Final report on the august 14, 2003 blackout in the United States and Canada: causes and recommendations (Tech. Rep.). U.S.–Canada Power System Outage Task Force.

  81. Liu, Y., Mendiratta, V., & Trivedi, K. (2004). Survivability analysis of telephone access network. In Proceedings of the 15th international symposium on software reliability engineering (pp. 367–378). Washington: IEEE Computer Society.

    Google Scholar 

  82. Losq, J. (1977). Effects of failures on gracefully degradable systems. In Proc. of 7th fault-tolerant computing symposium (pp. 29–34).

    Google Scholar 

  83. Lyons, R., & Vanderkulk, W. (1962). The use of triple-modular redundancy to improve computer reliability. IBM Journal of Research and Development, 6(2), 200–209.

    Article  Google Scholar 

  84. Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K. C., & Vahdat, A. (2006). The Internet AS-level topology: three data sources and one definitive metric. Computer Communication Review, 36(1), 17–26.

    Article  Google Scholar 

  85. Mahmood, R. A. (2009). Simulating challenges to communication networks for evaluation of resilience. Master’s thesis, The University of Kansas, Lawrence, KS.

  86. Map of Current Interstates (2011). http://en.wikipedia.org/wiki/File:Map_of_current_Interstates.svg.

  87. Medhi, D., & Tipper, D. (2000). Multi-layered network survivability-models, analysis, architecture, framework and implementation: an overview. In Proceedings of the DARPA information survivability conference and exposition (DISCEX) (Vol. 1, pp. 173–186).

    Chapter  Google Scholar 

  88. Medina, A., Matta, I., & Byers, J. (2000). On the origin of power laws in Internet topologies. Computer Communication Review, 30(2), 18–28.

    Article  Google Scholar 

  89. Meyer, J. (1980). On evaluating the performability of degradable computing systems. IEEE Transactions on Computers, 100(29), 720–731.

    Article  Google Scholar 

  90. Meyer, J. F. (2009). Defining and evaluating resilience: a performability perspective. In International workshop on performability modeling of computer and communication systems (PMCCS).

    Google Scholar 

  91. Minden, G., Evans, J., Searl, L., DePardo, D., Petty, V., Rajbanshi, R., Newman, T., Chen, Q., Weidling, F., Guffey, J., Datla, D., Barker, B., Peck, M., Cordill, B., Wyglinski, A., & Agah, A. (2007). KUAR: a flexible software-defined radio development platform. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 428–439).

    Chapter  Google Scholar 

  92. Mohammad, A. J., Hutchison, D., & Sterbenz, J. P. G. (2006). Towards quantifying metrics for resilient and survivable networks. In Proceedings of the 14th IEEE international conference on network protocols (ICNP) (pp. 17–18).

    Google Scholar 

  93. Molisz, W. (2004). Survivability function-a measure of disaster-based routing performance. IEEE Journal on Selected Areas in Communications, 22(9), 1876–1883.

    Article  Google Scholar 

  94. Molisz, W., & Rak, J. (2006). End-to-end service survivability under attacks on networks. Journal of Telecommunications and Information Technology, 3, 19–26.

    Google Scholar 

  95. Molisz, W., & Rak, J. (2008). f-cycles—a new approach to providing fast service recovery at low backup capacity overhead. In 10th anniversary international conference on transparent optical networks (ICTON), (Vol. 3, pp. 59–62).

    Google Scholar 

  96. Molisz, W., & Rak, J. (2010). Impact of WDM network topology characteristics on the extent of failure losses. In 12th international conference on transparent optical networks (ICTON) (pp. 1–4).

    Chapter  Google Scholar 

  97. Moore, E., & Shannon, C. (1956). Reliable circuits using less reliable relays. Journal of the Franklin Institute, 262(3), 191–208.

    Article  Google Scholar 

  98. Motiwala, M., Elmore, M., Feamster, N., & Vempala, S. (2008). Path splicing. In Proceedings of the ACM SIGCOMM conference on data communication (pp. 27–38). New York: ACM Press.

    Google Scholar 

  99. Neumayer, S., & Modiano, E. (2010). Network reliability with geographically correlated failures. In Proc. of IEEE INFOCOM (pp. 1–9).

    Chapter  Google Scholar 

  100. Neumayer, S., Zussman, G., Cohen, R., & Modiano, E. (2009). Assessing the vulnerability of the fiber infrastructure to disasters. In Proc. of IEEE INFOCOM (pp. 1566–1574).

    Google Scholar 

  101. Ng, Y., & Avizienis, A. (1977). A reliability model for gracefully degrading and repairable fault-tolerant systems. In Proceedings of 7th international symposium on fault-tolerant computing (pp. 29–34). Los Alamitos: IEEE Computing Society Press.

    Google Scholar 

  102. Ng, T. S. E., & Zhang, H. (2001). Predicting Internet network distance with coordinates-based approaches. In INFOCOM (pp. 170–179).

    Google Scholar 

  103. Nicol, D. M., Sanders, W. H., & Trivedi, K. S. (2004). Model-based evaluation: from dependability to security. IEEE Transactions on Dependable and Secure Computing, 01(1), 48–65.

    Article  Google Scholar 

  104. Nussbaumer, J., Patel, B. V., Schaffa, F., & Sterbenz, J. P. G. (1995). Networking requirements for interactive video on demand. IEEE Journal on Selected Areas in Communications, 13, 779–787.

    Article  Google Scholar 

  105. Oppenheimer, D., Ganapathi, A., & Patterson, D. A. (2003). Why do Internet services fail, and what can be done about it. In Proc. of USENIX USITS (pp. 1–16).

    Google Scholar 

  106. Pierce, W. (1965). Failure-tolerant computer design. San Diego: Academic Press.

    Google Scholar 

  107. PlanetLab (2009). http://www.planet-lab.org/.

  108. Protecting America’s infrastructures (1997). Report, President’s Commission on Critical Infrastructure Protection.

  109. ProtoGENI wiki (2010). http://www.protogeni.net/trac/protogeni.

  110. Qu, G., Jayaprakash, R., Hariri, S., & Raghavendra, C. (2002). A framework for network vulnerability analysis. In CT ’02: Proceedings of the 1st IASTED international conference on communications, Internet, information technology, St. Thomas, Virgin Islands, USA (pp. 289–298).

    Google Scholar 

  111. Quagga routing suite (2009).http://www.quagga.net/.

  112. Rak, J. (2010). k-penalty: a novel approach to find k-disjoint paths with differentiated path costs. IEEE Communications Letters, 14(4), 354–356.

    Article  Google Scholar 

  113. Raven provisioning service (2009). http://raven.cs.arizona.edu/.

  114. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (2004). Report, Critical National Infrastructures.

  115. Resilinets topology map viewer (2011). http://www.ittc.ku.edu/resilinets/maps/.

  116. Richards, C. W. (2007). Map of the Month: Mainline Tonnage 1980/2005.

  117. Rocketfuel (2008). An ISP topology mapping engine.

  118. Rohrer, J. P., Jabbar, A., Perrins, E., & Sterbenz, J. P. G. (2008). Cross-layer architectural framework for highly-mobile multihop airborne telemetry networks. In Proceedings of the IEEE military communications conference (MILCOM), San Diego, CA, USA (pp. 1–9).

    Google Scholar 

  119. Rohrer, J. P., Jabbar, A., & Sterbenz, J. P. G. (2009). Path diversification: a multipath resilience mechanism. In Proceedings of the IEEE 7th international workshop on the design of reliable communication networks (DRCN), Washington, DC, USA (pp. 343–351).

    Google Scholar 

  120. Rohrer, J. P., Naidu, R., & Sterbenz, J. P. G. (2009). Multipath at the transport layer: an end-to-end resilience mechanism. In Proceedings of the IEEE/IFIP international workshop on reliable networks design and modeling (RNDM), St. Petersburg, Russia (pp. 1–7).

    Google Scholar 

  121. Rohrer, J. P., Çetinkaya, E. K., & Sterbenz, J. P. G. (2011). Progress and challenges in large-scale future Internet experimentation using the GpENI programmable testbed. In The 6th ACM international conference on future internet technologies (CFI), pp. 46–49.

    Chapter  Google Scholar 

  122. Schaeffer-Filho, A., Smith, P., & Mauthe, A. (2011). Policy-driven network simulation: a resilience case study. In 26th ACM symposium on applied computing (SAC), Taichung, Taiwan.

    Google Scholar 

  123. Schneider, F. (1999). Trust in cyberspace. National Academies Press.

  124. Schöller, M., Smith, P., Rohner, C., Karaliopoulos, M., Jabbar, A., Sterbenz, J., & Hutchison, D. (2010). On realising a strategy for resilience in opportunistic networks. In Future network and mobile summit (pp. 1–8).

    Google Scholar 

  125. Severe space weather events: understanding societal and economic impacts (2008). Workshop report, National Research Council.

  126. Siganos, G., Faloutsos, M., Faloutsos, P., & Faloutsos, C. (2003). Power laws and the AS-level Internet topology. IEEE/ACM Transactions on Networking, 11(4), 514–524.

    Article  Google Scholar 

  127. Smith, P., Hutchison, D., Banfield, M., & Leopold, H. (2006). On understanding normal protocol behaviour to monitor and mitigate the abnormal. In Proceedings of the IEEE/IST workshop on monitoring, attack detection and mitigation (MonAM), Tuebingen, Germany (pp. 105–107).

    Google Scholar 

  128. Smith, P., Schaeffer-Filho, A., Ali, A., Schöller, M., Kheir, N., Mauthe, A., & Hutchison, D. (2010). Strategies for network resilience: capitalising on policies. In B. Stiller & F. De Turck (Eds.), Lecture notes in computer science: Vol. 6155. Mechanisms for autonomous management of networks and services (pp. 118–122). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  129. Spring, N., Mahajan, R., & Wetherall, D. (2004). Measuring ISP Topologies with Rocketfuel. IEEE/ACM Transactions on Networking, 12(1), 2–16.

    Article  Google Scholar 

  130. Sprint network maps (2010). https://www.sprint.net/network_maps.php.

  131. Sterbenz, J. P. G., & Hutchison, D. (2008). Resilinets: Multilevel resilient and survivable networking initiative wiki. http://wiki.ittc.ku.edu/resilinets.

  132. Sterbenz, J. P. G., & Touch, J. D. (2001). High-speed networking: a systematic approach to high-bandwidth low-latency communication (1st edn.). New York: Wiley.

    Google Scholar 

  133. Sterbenz, J. P. G., Krishnan, R., Hain, R. R., Jackson, A. W., Levin, D., Ramanathan, R., & Zao, J. (2002). Survivable mobile wireless networks: issues, challenges, and research directions. In WiSE ’02: proceedings of the 3rd ACM workshop on wireless security (pp. 31–40). New York: ACM Press.

    Chapter  Google Scholar 

  134. Sterbenz, J. P. G., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: strategies principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265. Special Issue on Resilient and Survivable Networks.

    Article  Google Scholar 

  135. Sterbenz, J. P. G., Medhi, D., Ramamurthy, B., Scoglio, C., Hutchison, D., Plattner, B., Anjali, T., Scott, A., Buffington, C., Monaco, G. E., Gruenbacher, D., McMullen, R., Rohrer, J. P., Sherrell, J., Angu, P., Cherukuri, R., Qian, H., & Tare, N. (2010). The Great plains Environment for Network Innovation (GpENI): a programmable testbed for future internet architecture research. In Proceedings of the 6th international conference on testbeds and research infrastructures for the development of networks & communities (TridentCom), Berlin, Germany (pp. 428–441).

    Google Scholar 

  136. Strand, J., Chiu, A., & Tkach, R. (2001). Issues for routing in the optical layer. IEEE Communications Magazine, 39(2), 81–87.

    Article  Google Scholar 

  137. Styron, H. C. (2001). CSX tunnel fire: Baltimore, MD (US Fire Administration Technical Report USFA-TR-140). Federal Emergency Management Administration, Emmitsburg, MD.

  138. Sydney, A., Scoglio, C., Youssef, M., & Schumm, P. (2010). Characterising the robustness of complex networks. International Journal of Internet Technology and Secured Transactions, 2, 291–320.

    Article  Google Scholar 

  139. Telecom Regulatory Authority of India: The Indian Telecom Services Performance Indicators April–June 2008. Quarterly press release, vol. 109 (2008).

  140. The click modular router project (2009). http://read.cs.ucla.edu/click/.

  141. The ns-3 network simulator (2009). http://www.nsnam.org.

  142. Thedinger, T., Jabbar, A., & Sterbenz, J. P. G. (2010). Store and haul with repeated controlled flooding. In Second international IEEE workshop on mobile computing and networking technologies (WMCNT) (pp. 728–733).

    Google Scholar 

  143. Trivedi, K., Kim, D., Roy, A., & Medhi, D. (2009). Dependability and security models. In Proceedings of the international workshop of design of reliable communication networks (DRCN) (pp. 11–20). New York: IEEE Press.

    Google Scholar 

  144. T1A1.2 (1993). Working Group: network survivability performance (Technical Report T1A1.2/93-001R3). Alliance for Telecommunications Industry Solutions (ATIS).

  145. T1A1.2 (2001). Working Group: enhanced network survivability performance (Technical Report T1.TR.68-2001). Alliance for Telecommunications Industry Solutions (ATIS).

  146. T1A1.2 (2004). Working Group: reliability-related metrics and terminology for network elements in evolving communications networks. American National Standard for Telecommunications T1.TR.524-2004, Alliance for Telecommunications Industry Solutions (ATIS).

  147. UK resilience homepage (2010). http://www.cabinetoffice.gov.uk/ukresilience.aspx.

  148. Van Mieghem, P., Doerr, C., Wang, H., Hernandez, J., Hutchison, D., Karaliopoulos, M., & Kooij, R. (2010). A framework for computing topological network robustness (Tech. rep.). Delft University of Technology. http://www.nas.ewi.tudelft.nl/people/Piet/papers/RobustnessRmodel_TUDreport20101218.pdf.

  149. VINI: A virtual network infrastructure (2009). http://www.vini-veritas.net/.

  150. Wang, C., & Byers, J. W. (2007). Generating representative ISP topologies from first-principles. In Proceedings of the ACM international conference on measurement and modeling of computer systems (SIGMETRICS) (pp. 365–366). New York: ACM Press.

    Google Scholar 

  151. Waxman, B. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(9), 1617–1622.

    Article  Google Scholar 

  152. Winick, J., & Jamin, S. (1996). Information security: computer hacker information available on the Internet (Tech. Rep. T-AIMD-96-108). United States General Accounting Office. http://www.fas.org/irp/gao/aimd-96-108.htm.

  153. Winick, J., & Jamin, S. (2002). Inet-3.0: Internet topology generator (Tech. Rep. UM-CSE-TR-456-02). EECS, University of Michigan. http://topology.eecs.umich.edu/inet/inet-3.0.pdf.

  154. XORP: Extensible open-source routing platform (2009). http://www.xorp.org/.

  155. Yook, S., Jeong, H., & Barabasi, A. (2002). Modeling the Internet’s large-scale topology. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13,382–13,386.

    Article  Google Scholar 

  156. Zegura, E., Calvert, K., & Bhattacharjee, S. (1996). How to model an internetwork. In Proceedings of the 15th annual joint conference of the IEEE computer societies (INFOCOM) (Vol. 2, pp. 594–602).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. G. Sterbenz.

Additional information

This research was supported in part by the National Science Foundation FIND (Future Internet Design) Program under grant CNS-0626918 (Postmodern Internet Architecture), by NSF grant CNS-1050226 (Multilayer Network Resilience Analysis and Experimentation on GENI), and the European Commission FIRE (Future Internet Research and Experimentation Programme) under grant FP7-224619 (ResumeNet).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sterbenz, J.P.G., Çetinkaya, E.K., Hameed, M.A. et al. Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation. Telecommun Syst 52, 705–736 (2013). https://doi.org/10.1007/s11235-011-9573-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9573-6

Keywords

Navigation