Skip to main content

Advertisement

Log in

Proactive recovery from multiple failures utilizing overlay networking technique

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a proactive recovery method against multiple network failures for large-scale packet switching networks. The proposed method exploits the overlay networking technique. Specifically, it constructs multiple logical network topologies from the original overlay network topology by assuming various failure patterns. When a failure is detected, our method selects one topology. Consequently, it can immediately recover from the failure by utilizing the selected topology without waiting for routing convergence in the network. When constructing multiple logical topologies, we take into account the correlation among overlay links in terms of the underlay links. Through the numerical evaluation results of the network reachability and average path length, we show that our method improves network reachability from 51% to 95% while keeping the path length short, when 25% underlay links are simultaneously down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Akamai. Available at http://www.akamai.com/.

  2. Andersen, D., Balakrishnan, H., Kaashoek, M., & Morris, R. (2001). Resilient overlay networks. In Proceedings of the 18th ACM symposium on operating systems principles.

    Google Scholar 

  3. Andersen, D. G., Snoeren, A. C., & Balakrishnan, H. (2001). Best-path vs. multi-path overlay routing. In Proceedings of the ACM SIGCOMM 2001 (pp. 91–100).

    Google Scholar 

  4. Barabási, A., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  Google Scholar 

  5. BitTorrent. Available at http://www.bittorrent.com/.

  6. Chen, P., Cho, W. H., Duan, Z., & Yuan, X. (2008). Traffic-aware inter-domain routing for improved internet routing stability. In Proceedings of the GLOBECOM 2008 (pp. 2226–2231).

    Google Scholar 

  7. El-Ansary, S., Alima, L. O., Brand, P., & Haridi, S. (2007). Approximation and heuristic algorithms for minimum-delay application-layer multicast trees. IEEE/ACM Transactions on Networking, 15(2), 473–484.

    Article  Google Scholar 

  8. Erdös, P., & Rényi (1960). On the evolution of random graphs. A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, 5, 17–61.

    Google Scholar 

  9. Fortz, B., & Thorup, M. (2002). Optimizing OSPF/IS-IS weights in a changing world. IEEE Journal on Selected Areas in Communications, 20, 756–767.

    Article  Google Scholar 

  10. Gao, L. (2001). On inferring autonomous system relationships in the Internet. IEEE/ACM Transactions on Networking, 9(6), 733–745.

    Article  Google Scholar 

  11. Gleeson, B., Lin, A., Heinanen, J., Armitage, G., & Malis, A. (2000). A framework for IP based virtual private networks. RFC 2764.

  12. Globus. Available at http://www.globus.org/.

  13. Graphviz. Available at http://www.graphviz.org/.

  14. Han, H., Shakkottai, S., Hollot, C. V., Srikant, R., & Towsley, D. (2004). Overlay TCP for multi-path routing and congestion control. In Proceedings of the IMA workshop on measurements and modeling of the internet.

    Google Scholar 

  15. Hansen, A., Kvalbein, A., Čičić, T., & Gjessing, S. (2005). Resilient routing layers for network disaster planning. Lecture Notes in Computer Science, 3421, 1097–1105.

    Article  Google Scholar 

  16. Hansen, A., Kvalbein, A., Čičić, T., Gjessing, S., & Lysne, O. (2005). Resilient routing layers for recovery in packet networks. In Proceedings of the 2005 international conference on dependable systems and networks (pp. 238–247).

    Chapter  Google Scholar 

  17. Huston, G. (1999). Interconnection, peering, and settlements. In Proceedings of INET’99.

    Google Scholar 

  18. Klopfenstein, O. (2007). Robust pre-provisioning of local protection resources in MPLS networks. In Proceedings of DRCN 2007 (pp. 1–7).

    Google Scholar 

  19. Labovitz, C., Ahuja, A., Bose, A., & Jahanian, F. (2000). Delayed Internet routing convergence. In Proceedings of ACM SIGCOMM 2000 (Vol. 9, pp. 293–306).

    Google Scholar 

  20. Lao, L., Cui, J. H., Gerla, M., & Chen, S. (2007). A scalable overlay multicast architecture for large-scale applications. IEEE Transactions on Parallel and Distributed Systems, 18(4), 449–459.

    Article  Google Scholar 

  21. Lee, S., Yu, Y., Nelakuditi, S., Zhang, Z. L., & Chuah, C. N. (2004). Proactive vs reactive approaches to failure resilient routing. In Proceedings of the IEEE INFOCOM 2004 (Vol. 1, pp. 176–186).

    Chapter  Google Scholar 

  22. Lee, S. J., Banerjee, S., Sharma, P., Yalagandula, P., & Basu, S. (2008). Bandwidth-aware routing in overlay networks. In Proceedings of IEEE INFOCOM 2008 (pp. 1732–1740).

    Chapter  Google Scholar 

  23. Li, Z., & Mohapatra, P. (2004). QRON: QoS-aware routing in overlay networks. IEEE Journal on Selected Areas in Communications, 22(1), 29–40.

    Article  Google Scholar 

  24. Liao, Y., Gao, L., Guerin, R., & Zhang, Z. L. (2008). Reliable interdomain routing through multiple complementary routing processes. In Proceedings of the 2008 ACM CoNEXT conference (pp. 323–332).

    Google Scholar 

  25. Medina, A., Lakhina, A., Matta, I., & Byers, J. BRITE: Boston University representative internet topology generator. Available at http://www.cs.bu.edu/brite/index.html#.

  26. Norton, W. A business case for peering. Available at http://www.equinix.com/pdf/whitepapers/Business_case.pdf.

  27. Norton, W. Internet service providers and peering. Available at http://www.equinix.com/pdf/whitepapers/PeeringWP.2.pdf.

  28. Pei, D., Azuma, M., Massey, D., & Zhang, L. (2004). BGP-RCN: Improving BGP convergence through root cause notification (Tech. Rep. CO80523-1873). UCLA CSD.

  29. Rai, S., Mukherjee, B., & Deshpande, O. (2005). IP resilience within an autonomous system: Current approaches, challenges, and future directions. IEEE Communications Magazine, 43, 142–149.

    Article  Google Scholar 

  30. Rekhter, Y., & Li, T. (1995). A border gateway protocol 4 (BGP–4). RFC 1771.

  31. Sahoo, A., Kant, K., & Mohapatra, P. (2006). Characterization of BGP recovery time under large-scale failures. In Proceedings of ICC 2006.

    Google Scholar 

  32. Sahoo, A., Kant, K., & Mohapatra, P. (2006). Improving BGP convergence delay for large–scale failures. In Proceedings of the DSN’06 (pp. 323–332).

    Google Scholar 

  33. Sahooa, A., Kantb, K., & Mohapatra, P. (2009). BGP convergence delay after multiple simultaneous router failures: Characterization and solutions. Computer Communications, 32(7–10), 1207–1218.

    Article  Google Scholar 

  34. Spring, N., Mahajan, R., & Wetherall, D. (2002). Measuring ISP topologies with rocketfuel. In Proceedings of the 2002 SIGCOMM conference.

    Google Scholar 

  35. Subrmanian, L., Agarwal, S., Rexford, J., & Katz, H. R. (2002). Characterizing the Internet hierarchy from multiple vantage points. In Proceedings of IEEE INFOCOM 2002.

    Google Scholar 

  36. Tanenbaum, A. S. (1996) Computer networks (3rd ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  37. Wang, D., & Li, G. (2008). Efficient distributed bandwidth management for MPLS fast reroute. IEEE/ACM Transactions on Networking, 16, 486–495.

    Article  Google Scholar 

  38. Xu, Z., Mahalingam, M., & Karlsson, M. (2003). Turning heterogeneity into an advantage in overlay routing. In Proceedings of IEEE INFOCOM 2003 (Vol. 2, pp. 1499–1509).

    Google Scholar 

  39. Zhang, B., Massey, D., & Zhang, L. (2004). Destination reachability and BGP convergence time. In Proceedings of IEEE GLOBECOM 2004 (Vol. 3, pp. 1383–1389).

    Google Scholar 

  40. Zhu, Y., Dovrolis, C., & Ammar, M. (2006). Dynamic overlay routing based on available bandwidth estimation: A simulation study. Computer Networks, 50, 742–762.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, G., Horie, T. & Murata, M. Proactive recovery from multiple failures utilizing overlay networking technique. Telecommun Syst 52, 1001–1019 (2013). https://doi.org/10.1007/s11235-011-9608-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9608-z

Keywords

Navigation