Abstract
Finding solutions to green manufacturing, green production, and increasing energy efficiency is definitely our responsibility to resist changing the vulnerable environment dramatically. Over the past, several practical techniques have been proposed to reduce the greenhouse gas emissions, e.g., increasing energy efficiency, reducing power usage, using sustainable energy, and recycling. This paper first gives a brief review of green computing and then presents a case study for energy efficiency called energy efficient particle swarm optimization (EEPSO). The proposed algorithm integrates particle swarm optimization and triangle inequality for improving energy efficiency of computers, by using the clustering results to adjust the CPU frequency of network management system. Simulation results show that not only can the proposed algorithm significantly reduce the computation time, but it can also be extended to enhance the performance of network traffic control system to further reduce the power they consume.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Talebi, M., & Way, T. (2009). Methods, metrics and motivation for a green computer science program. In Proceedings of the 40th ACM technical symposium on computer science education (pp. 362–366).
von Schirnding, Y., & Mulholland, C. (2002). Health in the context of sustainable development. In World Health Organization meeting: planning the health agenda for the WSSD, Oslo, Norway. Geneva: WHO.
Wackernagel, M., Schulz, N. B., Deumling, D., Linares, A. C., Jenkins, M., Kapos, V., Monfreda, C., Loh, J., Myers, N., Norgaard, R., & Randers, J. (2002). Tracking the ecological overshoot of the human economy. Proceedings of the National Academy of Sciences of the United States of America, 99(14), 9266–9271.
Postel, S. (1994). Carrying capacity: earth’s bottom line. Challenge, 37, 4–12.
Hanks, T. C., & Anderson, D. L. (1969). The early thermal history of the earth. Physics of the Earth and Planetary Interiors, 2(1), 19–29.
Diamond, J. (2005). Collapse: how societies choose to fail or succeed. Baltimore: Penguin (Non-Classics).
Ponting, C. The lessons of Easter island. http://www.eco-action.org/dt/eisland.html.
National Geographic. (2011). Easter island. http://travel.nationalgeographic.com/travel/world-heritage/easter-island/.
Williams, J., & Curtis, L. (2008). Green: the new computing coat of arms? IT Professional, 10(1), 12–16.
Mann, H., Grant, G., & Mann, I. J. S. Green it: an implementation framework.
Francis, K., & Richardson, P. (2009). Green maturity model for virtualization. The Architecture Journal, 18(1), 9–15.
Harmon, R. R., & Auseklis, N. (2009). Sustainable IT services: Assessing the impact of green computing practices. In Proceedings of the international conference on management of engineering & technology PICMET (pp. 1707–1717).
Niyato, D., Chaisiri, S., & Sung, L. B. (2009). Optimal power management for server farm to support green computing. In Proceedings of the 2009 9th IEEE/ACM international symposium on cluster computing and the grid (pp. 84–91).
Costa, G. D., Gelas, J.-P., Georgiou, Y., Lefevre, L., Orgerie,A.-C., Pierson, J.-M., Richard, O., & Sharma, K. (2009). The green-net framework: energy efficiency in large scale distributed systems. In Proceedings of the international parallel and distributed processing symposium (pp. 1–8).
Feng, B. Z., & Lung, C. H. (2010). A green computing based architecture comparison and analysis. In Proceedings of the 2010 IEEE/ACM international conference on green computing and communications (GreenCom 2010) (pp. 386–391).
Feng, B. Z., & Lung, C. H. (2010). Green computing—new horizon of energy efficiency and e-waste minimization—world perspective vis-á-vis indian scenario. In CSI, India (pp. 64–69).
Murphy, R., Sterling, T., & Dekate, C. (2010). Advanced architectures and execution models to support green computing. Computing in Science & Engineering, 12, 38–47.
Murugesan, S. (2008). Harnessing green it: principles and practices. IT Professional, 10(1), 24–33.
Thompson, J. T. (2009). Three approaches to green computing on campus. EDUCAUSE Quarterly Magazine, 32(3).
Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. Y. (2011). A taxonomy and survey of energy-efficient data centers and cloud computing systems. In Advances in computers (Vol. 82, pp. 47–111)
Tanelli, M., Ardagna, D., Lovera, M., & Zhang, L. (2008). Model identification for energy-aware management of web service systems. In Proceeding of the international conference on service-oriented computing (pp. 599–606).
Berl, A., Gelenbe, E., Girolamo, M. D., Giuliani, G., Meer, H. D., Dang, M. Q., & Pentikousis, K. (2010). Energy-efficient cloud computing. Computer Journal, 53(7), 1045–1051.
Fanara, A. (2007). Report to congress on server and data center efficiency. In Public law 109-431, U.S. Environmental Protection Agency (EPA) ENERGY STAR program.
Hemminger, C., & Rogers, D. (2010). Green high performance computing. In Midwest instruction and computing symposium.
Feng, W. C., & Cameron, K. (2007). The green500 list: encouraging sustainable supercomputing. Computer, 40(12), 50–55.
Rogers, D., & Homann, U. (2009). Applications patterns for green it. The Architecture Journal, 18(1), 16–21.
Schmidt, R., & Shaukatullah, H. (2002). Computer and telecommunications equipment room cooling: a review of the literature. In Proceedings of the eight intersociety conference on thermal and thermomechanical phenomena in electronic systems (pp. 751–766).
Rambo, J., & Joshi, Y. (2007). Modeling of data center airflow and heat transfer: state of the art and future trends. Distributed and Parallel Databases, 21(2–3), 193–225.
Abdelzaher, T., Shin, K. G., & Bhatti, N. (2002). Performance guarantees for web server end-systems: a control-theoretical approach. IEEE Transactions on Parallel and Distributed Systems, 13(1), 80–96.
Pillai, P., & Shin, K. G. (2001). Real-time dynamic voltage scaling for low-power embedded operating systems. In Proceedings of the eighteenth ACM symposium on operating systems principles (pp. 89–102).
Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D. H., Dwarkadas, S., & Scott, M. L. (2002). Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling. In Proceedings of the 8th international symposium on high-performance computer architecture (pp. 29–42).
Tsai, C.-W., Lee, C.-Y., Chiang, M.-C., & Yang, C.-S. (2009). A fast VQ codebook generation algorithm via pattern reduction. Pattern Recognition Letters, 30(7), 653–660.
Lai, J. Z. C., Liaw, Y. C., & Liu, J. (2008). A fast VQ codebook generation algorithm using codeword displacement. Pattern Recognition, 41(1), 315–319.
Chen, Q., Yang, J., & Gou, J. (2005). Image compression method using improved PSO vector quantization. In International conference on natural computation (pp. 490–495).
Kaukoranta, T., Fränti, P., & Nevalainen, O. (2000). A fast exact GLA based on code vector activity detection. IEEE Transactions on Image Processing, 9(8), 1337–1342.
Harris, J. (2008). Green computing and green it best practices on regulations and industry initiatives, virtualization, power management, materials recycling and telecommuting. London: Emereo Pty Ltd.
Liu, L., Wang, H., Liu, X., Jin, X., He, W. B., Wang, Q. B., & Chen, Y. (2009). Greencloud: a new architecture for green data center. In Proceedings of the 6th international conference industry session on autonomic computing and communications industry session (pp. 29–38).
Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008). The cost of a cloud: research problems in data center networks. Computer Communication Review, 39(1), 68–73.
Fan, X., Weber, W.-D., & Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. In Proceedings of the 34th annual international symposium on computer architecture (pp. 13–23).
Wilbanks, L. (2008). Green: My favorite color. IT Professional, 10, 63–64.
Kahn Consulting Inc (2005). Electronic discovery costs: managing systems and information to control costs and improve results (pp. 1–12).
McQueen, J. B. (1967). Some methods of classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley symposium on mathematical statistics and probability (pp. 281–297).
Krishna, K., & Murty, M. N. (1999). Genetic k-means algorithm. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 29(3), 433–439.
Omran, M. G., Salman, A. A., & Engelbrecht, A. P. (2002). Image classification using particle swarm optimization. In Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning (pp. 370–374).
Curtis, L. (2009). Environmentally sustainable infrastructure design. The Architecture Journal, 18(1), 2–8.
Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: a review. ACM Computing Surveys, 31(3), 264–323.
Xu, R. Wunsch, D. II (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.
Kogan, J. (2007). Introduction to clustering large and high-dimensional data. New York: Cambridge University Press.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks (Vol. 4, pp. 1942–1948).
Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Proceedings of the twentieth international conference on machine learning (pp. 147–153).
Brucker, P. (1978). Survey of clustering algorithms. Lecture Notes in Economics and Mathematical Systems, 157, 45–54.
Xu, R., & Wunsch, D. C. (2008). Clustering. New York: Wiley.
Al-Sultan, K. S. (1995). A tabu search approach to the clustering problem. Pattern Recognition, 28(9), 1443–1451.
Klein, R. W., & Dubes, R. C. (1989). Experiments in projection and clustering by simulated annealing. Pattern Recognition, 22(2), 213–220.
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.
van der Merwe, D. W., & Engelbrecht, A. P. (2003). Data clustering using particle swarm optimization. In Proceedings of IEEE congress on evolutionary computation (pp. 215–220).
Omran, M. G., Engelbrecht, A. P., & Salman, A. A. (2005). Particle swarm optimization method for image clustering. International Journal of Pattern Recognition and Artificial Intelligence, 19(3), 297–321.
Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255.
Yang, C.-S., Chuang, L.-Y., Ke, C.-H., & Yang, C.-H. (2008). Comparative particle swarm optimization (CPSO) for solving optimization problems. In Proceedings of international conference on research, innovation and vision for the future in computing & communication Technologies (pp. 86–90).
Cohen, S. C., & de Castro, L. N. (2006). Data clustering with particle swarms. In Proceedings of IEEE congress on evolutionary computation, pages (pp. 1792–1798).
Das, S., Abraham, A., & Konar, A. (2008). Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 29(5), 688–699.
Omran, M. G., Salman, A. A., & Engelbrecht, A. P. (2006). Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Analysis & Applications, 8(4), 332–344.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liao, MY., Tsai, CW., Yang, CS. et al. Energy efficiency based on high performance particle swarm optimization: a case study. Telecommun Syst 52, 1293–1304 (2013). https://doi.org/10.1007/s11235-011-9641-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-011-9641-y