Skip to main content

Advertisement

Log in

Energy efficiency based on high performance particle swarm optimization: a case study

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Finding solutions to green manufacturing, green production, and increasing energy efficiency is definitely our responsibility to resist changing the vulnerable environment dramatically. Over the past, several practical techniques have been proposed to reduce the greenhouse gas emissions, e.g., increasing energy efficiency, reducing power usage, using sustainable energy, and recycling. This paper first gives a brief review of green computing and then presents a case study for energy efficiency called energy efficient particle swarm optimization (EEPSO). The proposed algorithm integrates particle swarm optimization and triangle inequality for improving energy efficiency of computers, by using the clustering results to adjust the CPU frequency of network management system. Simulation results show that not only can the proposed algorithm significantly reduce the computation time, but it can also be extended to enhance the performance of network traffic control system to further reduce the power they consume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Talebi, M., & Way, T. (2009). Methods, metrics and motivation for a green computer science program. In Proceedings of the 40th ACM technical symposium on computer science education (pp. 362–366).

    Chapter  Google Scholar 

  2. von Schirnding, Y., & Mulholland, C. (2002). Health in the context of sustainable development. In World Health Organization meeting: planning the health agenda for the WSSD, Oslo, Norway. Geneva: WHO.

    Google Scholar 

  3. Wackernagel, M., Schulz, N. B., Deumling, D., Linares, A. C., Jenkins, M., Kapos, V., Monfreda, C., Loh, J., Myers, N., Norgaard, R., & Randers, J. (2002). Tracking the ecological overshoot of the human economy. Proceedings of the National Academy of Sciences of the United States of America, 99(14), 9266–9271.

    Article  Google Scholar 

  4. Postel, S. (1994). Carrying capacity: earth’s bottom line. Challenge, 37, 4–12.

    Google Scholar 

  5. Hanks, T. C., & Anderson, D. L. (1969). The early thermal history of the earth. Physics of the Earth and Planetary Interiors, 2(1), 19–29.

    Article  Google Scholar 

  6. Diamond, J. (2005). Collapse: how societies choose to fail or succeed. Baltimore: Penguin (Non-Classics).

    Google Scholar 

  7. Ponting, C. The lessons of Easter island. http://www.eco-action.org/dt/eisland.html.

  8. National Geographic. (2011). Easter island. http://travel.nationalgeographic.com/travel/world-heritage/easter-island/.

  9. Williams, J., & Curtis, L. (2008). Green: the new computing coat of arms? IT Professional, 10(1), 12–16.

    Article  Google Scholar 

  10. Mann, H., Grant, G., & Mann, I. J. S. Green it: an implementation framework.

  11. Francis, K., & Richardson, P. (2009). Green maturity model for virtualization. The Architecture Journal, 18(1), 9–15.

    Google Scholar 

  12. Harmon, R. R., & Auseklis, N. (2009). Sustainable IT services: Assessing the impact of green computing practices. In Proceedings of the international conference on management of engineering & technology PICMET (pp. 1707–1717).

    Google Scholar 

  13. Niyato, D., Chaisiri, S., & Sung, L. B. (2009). Optimal power management for server farm to support green computing. In Proceedings of the 2009 9th IEEE/ACM international symposium on cluster computing and the grid (pp. 84–91).

    Chapter  Google Scholar 

  14. Costa, G. D., Gelas, J.-P., Georgiou, Y., Lefevre, L., Orgerie,A.-C., Pierson, J.-M., Richard, O., & Sharma, K. (2009). The green-net framework: energy efficiency in large scale distributed systems. In Proceedings of the international parallel and distributed processing symposium (pp. 1–8).

    Google Scholar 

  15. Feng, B. Z., & Lung, C. H. (2010). A green computing based architecture comparison and analysis. In Proceedings of the 2010 IEEE/ACM international conference on green computing and communications (GreenCom 2010) (pp. 386–391).

    Google Scholar 

  16. Feng, B. Z., & Lung, C. H. (2010). Green computing—new horizon of energy efficiency and e-waste minimization—world perspective vis-á-vis indian scenario. In CSI, India (pp. 64–69).

    Google Scholar 

  17. Murphy, R., Sterling, T., & Dekate, C. (2010). Advanced architectures and execution models to support green computing. Computing in Science & Engineering, 12, 38–47.

    Article  Google Scholar 

  18. Murugesan, S. (2008). Harnessing green it: principles and practices. IT Professional, 10(1), 24–33.

    Article  Google Scholar 

  19. Thompson, J. T. (2009). Three approaches to green computing on campus. EDUCAUSE Quarterly Magazine, 32(3).

  20. Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. Y. (2011). A taxonomy and survey of energy-efficient data centers and cloud computing systems. In Advances in computers (Vol. 82, pp. 47–111)

    Google Scholar 

  21. Tanelli, M., Ardagna, D., Lovera, M., & Zhang, L. (2008). Model identification for energy-aware management of web service systems. In Proceeding of the international conference on service-oriented computing (pp. 599–606).

    Google Scholar 

  22. Berl, A., Gelenbe, E., Girolamo, M. D., Giuliani, G., Meer, H. D., Dang, M. Q., & Pentikousis, K. (2010). Energy-efficient cloud computing. Computer Journal, 53(7), 1045–1051.

    Article  Google Scholar 

  23. Fanara, A. (2007). Report to congress on server and data center efficiency. In Public law 109-431, U.S. Environmental Protection Agency (EPA) ENERGY STAR program.

    Google Scholar 

  24. Hemminger, C., & Rogers, D. (2010). Green high performance computing. In Midwest instruction and computing symposium.

    Google Scholar 

  25. Feng, W. C., & Cameron, K. (2007). The green500 list: encouraging sustainable supercomputing. Computer, 40(12), 50–55.

    Article  Google Scholar 

  26. Rogers, D., & Homann, U. (2009). Applications patterns for green it. The Architecture Journal, 18(1), 16–21.

    Google Scholar 

  27. Schmidt, R., & Shaukatullah, H. (2002). Computer and telecommunications equipment room cooling: a review of the literature. In Proceedings of the eight intersociety conference on thermal and thermomechanical phenomena in electronic systems (pp. 751–766).

    Google Scholar 

  28. Rambo, J., & Joshi, Y. (2007). Modeling of data center airflow and heat transfer: state of the art and future trends. Distributed and Parallel Databases, 21(2–3), 193–225.

    Article  Google Scholar 

  29. Abdelzaher, T., Shin, K. G., & Bhatti, N. (2002). Performance guarantees for web server end-systems: a control-theoretical approach. IEEE Transactions on Parallel and Distributed Systems, 13(1), 80–96.

    Article  Google Scholar 

  30. Pillai, P., & Shin, K. G. (2001). Real-time dynamic voltage scaling for low-power embedded operating systems. In Proceedings of the eighteenth ACM symposium on operating systems principles (pp. 89–102).

    Chapter  Google Scholar 

  31. Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D. H., Dwarkadas, S., & Scott, M. L. (2002). Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling. In Proceedings of the 8th international symposium on high-performance computer architecture (pp. 29–42).

    Google Scholar 

  32. Tsai, C.-W., Lee, C.-Y., Chiang, M.-C., & Yang, C.-S. (2009). A fast VQ codebook generation algorithm via pattern reduction. Pattern Recognition Letters, 30(7), 653–660.

    Article  Google Scholar 

  33. Lai, J. Z. C., Liaw, Y. C., & Liu, J. (2008). A fast VQ codebook generation algorithm using codeword displacement. Pattern Recognition, 41(1), 315–319.

    Article  Google Scholar 

  34. Chen, Q., Yang, J., & Gou, J. (2005). Image compression method using improved PSO vector quantization. In International conference on natural computation (pp. 490–495).

    Chapter  Google Scholar 

  35. Kaukoranta, T., Fränti, P., & Nevalainen, O. (2000). A fast exact GLA based on code vector activity detection. IEEE Transactions on Image Processing, 9(8), 1337–1342.

    Article  Google Scholar 

  36. Harris, J. (2008). Green computing and green it best practices on regulations and industry initiatives, virtualization, power management, materials recycling and telecommuting. London: Emereo Pty Ltd.

    Google Scholar 

  37. Liu, L., Wang, H., Liu, X., Jin, X., He, W. B., Wang, Q. B., & Chen, Y. (2009). Greencloud: a new architecture for green data center. In Proceedings of the 6th international conference industry session on autonomic computing and communications industry session (pp. 29–38).

    Chapter  Google Scholar 

  38. Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008). The cost of a cloud: research problems in data center networks. Computer Communication Review, 39(1), 68–73.

    Article  Google Scholar 

  39. Fan, X., Weber, W.-D., & Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. In Proceedings of the 34th annual international symposium on computer architecture (pp. 13–23).

    Google Scholar 

  40. Wilbanks, L. (2008). Green: My favorite color. IT Professional, 10, 63–64.

    Google Scholar 

  41. Kahn Consulting Inc (2005). Electronic discovery costs: managing systems and information to control costs and improve results (pp. 1–12).

  42. McQueen, J. B. (1967). Some methods of classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley symposium on mathematical statistics and probability (pp. 281–297).

    Google Scholar 

  43. Krishna, K., & Murty, M. N. (1999). Genetic k-means algorithm. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 29(3), 433–439.

    Article  Google Scholar 

  44. Omran, M. G., Salman, A. A., & Engelbrecht, A. P. (2002). Image classification using particle swarm optimization. In Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning (pp. 370–374).

    Google Scholar 

  45. Curtis, L. (2009). Environmentally sustainable infrastructure design. The Architecture Journal, 18(1), 2–8.

    Google Scholar 

  46. Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: a review. ACM Computing Surveys, 31(3), 264–323.

    Article  Google Scholar 

  47. Xu, R. Wunsch, D. II (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.

    Article  Google Scholar 

  48. Kogan, J. (2007). Introduction to clustering large and high-dimensional data. New York: Cambridge University Press.

    Google Scholar 

  49. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks (Vol. 4, pp. 1942–1948).

    Chapter  Google Scholar 

  50. Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Proceedings of the twentieth international conference on machine learning (pp. 147–153).

    Google Scholar 

  51. Brucker, P. (1978). Survey of clustering algorithms. Lecture Notes in Economics and Mathematical Systems, 157, 45–54.

    Article  Google Scholar 

  52. Xu, R., & Wunsch, D. C. (2008). Clustering. New York: Wiley.

    Book  Google Scholar 

  53. Al-Sultan, K. S. (1995). A tabu search approach to the clustering problem. Pattern Recognition, 28(9), 1443–1451.

    Article  Google Scholar 

  54. Klein, R. W., & Dubes, R. C. (1989). Experiments in projection and clustering by simulated annealing. Pattern Recognition, 22(2), 213–220.

    Article  Google Scholar 

  55. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.

    Book  Google Scholar 

  56. van der Merwe, D. W., & Engelbrecht, A. P. (2003). Data clustering using particle swarm optimization. In Proceedings of IEEE congress on evolutionary computation (pp. 215–220).

    Google Scholar 

  57. Omran, M. G., Engelbrecht, A. P., & Salman, A. A. (2005). Particle swarm optimization method for image clustering. International Journal of Pattern Recognition and Artificial Intelligence, 19(3), 297–321.

    Article  Google Scholar 

  58. Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255.

    Article  Google Scholar 

  59. Yang, C.-S., Chuang, L.-Y., Ke, C.-H., & Yang, C.-H. (2008). Comparative particle swarm optimization (CPSO) for solving optimization problems. In Proceedings of international conference on research, innovation and vision for the future in computing & communication Technologies (pp. 86–90).

    Google Scholar 

  60. Cohen, S. C., & de Castro, L. N. (2006). Data clustering with particle swarms. In Proceedings of IEEE congress on evolutionary computation, pages (pp. 1792–1798).

    Google Scholar 

  61. Das, S., Abraham, A., & Konar, A. (2008). Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 29(5), 688–699.

    Article  Google Scholar 

  62. Omran, M. G., Salman, A. A., & Engelbrecht, A. P. (2006). Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Analysis & Applications, 8(4), 332–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Feng Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, MY., Tsai, CW., Yang, CS. et al. Energy efficiency based on high performance particle swarm optimization: a case study. Telecommun Syst 52, 1293–1304 (2013). https://doi.org/10.1007/s11235-011-9641-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9641-y

Keywords

Navigation