Skip to main content
Log in

An improved equation based rate adaptation scheme for video streaming over UMTS

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Streaming video has experienced phenomenal growth owing to the extensive research in video transmission over wireless networks. This paper describes an improved equation based rate adaptation (EBRA) scheme for video streaming over universal mobile telecommunications system (UMTS). In our method, transmission rate is determined as a function of packet size (s), round trip time (rtt), loss event rate (p) and two novel control parameters for congestion window adjustment (α and β). Our mechanism is compatible with unpredictable wireless channel conditions and provides smooth and flexible sending rate and slowly responsible congestion control by dynamic modification of mentioned parameters. We have simulated this method in UMTS and our results indicate that EBRA in addition to network stability increases throughput with low variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexiou, A. G., Antonellis, D., & Bouras, C. (2007). Adaptive and reliable video transmission over UMTS for enhanced performance. International Journal of Communication Systems, 20(1), 65–81.

    Article  Google Scholar 

  2. Alexiou, A. G., Bouras, C., & Igglesis, V. (2007). Scalable rate control for video transmission over UMTS. International Journal of Communication Systems, 20(12), 1315–1335.

    Article  Google Scholar 

  3. Alexiou, A. G., Antonellis, D., & Bouras, C. (2006). Equation based congestion control for video transmission over WCDMA networks. In IEEE AINA 2006 (pp. 445–450).

    Google Scholar 

  4. Falik, Y., Averbuch, A., & Yechiali, U. (2009). Transmission algorithm for video streaming over cellular networks. Wireless Networks, 16(5), 1459–1475.

    Article  Google Scholar 

  5. Handley, M., Floyd, S., Padhye, J., & Widmer, J. (2003). TCP friendly rate control (TFRC): protocol specification, IETF, RFC 3448.

  6. Handley, M., Floyd, S., Padhye, J., & Widmer, J. (2008). TCP friendly rate control (TFRC): protocol specification, IETF, RFC 5348.

  7. Yoo, T., Setton, E., Zhu, X., Goldsmith, A., & Girod, B. (2004). Cross-layer design for video streaming over wireless ad hoc networks. In MultiMedia signal processing workshop, Sienna, Italy (pp. 99–102).

    Google Scholar 

  8. Hsu, C., & Hefeeda, M. (2009). Cross-layer optimization of video streaming in single-hop wireless networks. In Multimedia computing and networking (MMCN’09), 13 pages.

    Google Scholar 

  9. Xhang, Y., Fu, F., & Van der Schaar, M. (2010). On-line learning and optimization for wireless video transmission. IEEE Transaction on Signal Processing, 3108–3124. doi:10.1109/TSP.2010.2046040.

  10. Adlakha, S., Zhu, X., Girod, B., & Goldsmith, A. (2007). Joint capacity, flow and rate allocation for multiuser video streaming over wireless ad-hoc networks. In Proc. IEEE intern. conf. on communications (ICC), Glasgow, Scotland.

    Google Scholar 

  11. Zhu, X., & Girod, B. (2010). Distributed media-aware rate allocation for wireless video streaming. IEEE Transactions on Circuits and Systems for Video Technology, 20(11), 1462–1474.

    Article  Google Scholar 

  12. Chen, L., Low, S. H., & Doyle, J. C. (2005). Joint congestion control and media access control design for ad hoc wireless networks. In IEEE INFOCOM.

    Google Scholar 

  13. Fu, C. P., & Liew, S. C. (2003). TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE Journal on Selected Areas in Communications, 21(2), 216–228.

    Article  Google Scholar 

  14. Choe, H., & Low, S. H. (2003). Stabilized Vegas. IEEE INFOCOM, 22(1), 2290–2300.

    Google Scholar 

  15. Xu, K., Tian, Y., & Ansari, N. (2005). Improving TCP performance in integrated wireless communications networks. Computer Networks, Science Direct, 47(2), 219–237.

    Article  Google Scholar 

  16. Chen, M., & Zakhor, A. (2006). Multiple TFRC connections based rate control for wireless networks. IEEE Transactions on Multimedia, 8(5), 1045–1062.

    Article  Google Scholar 

  17. Balakrishnan, H., & Katz, R. (1998). Explicit loss notification and wireless web performance. In IEEE Globecom internet mini-conference.

    Google Scholar 

  18. Paras, C., & Garcia-Luna-Aceves, J. J. (2000). Improving TCP performance over wireless networks at the link layer. Mobile Networks and Applications, 5(1), 57–71.

    Article  Google Scholar 

  19. Barman, D., & Matta, I. (2002). Effectiveness of loss labeling in improving TCP performance in wired/wireless networks. In 10th ICNP, Washington, DC, USA (pp. 2–11).

    Google Scholar 

  20. Cen, S., Cosman, P., & Voelker, G. (2003). End-to-end differentiation of congestion and wireless losses. IEEE/ACM Trans. Networking, 11(5), 703–717.

    Article  Google Scholar 

  21. Kuzmanovic, A., & Knightly, E. W. (2004). A performance vs. trust perspective in the design of end-point congestion control protocols. In Network protocols ICNP 2004.

    Google Scholar 

  22. Yang, G., Gerla, M., & Sanadidi, M. Y. (2004). Adaptive video streaming in presence of wireless errors. In ACM MMNS, San Diego, USA.

    Google Scholar 

  23. Yang, F., Zhang, Q., Zhu, W., & Zhang, Y. Q. (2004). End-to-end TCP-friendly streaming protocol and bit allocation for scalable video over mobile wireless internet. In IEEE INFOCOM, Hong Kong, China.

    Google Scholar 

  24. Akan, B., & Akyildiz, I. F. (2004). Arc: the analytical rate control scheme for real-time traffic in wireless networks. IEEE/ACM Trans. Networking, 12(4), 634–644.

    Article  Google Scholar 

  25. Floyd, S. (1994). TCP and explicit congestion notification. ACM Computer Communication Review, 10–23. doi:10.1145/205511.205512.

  26. Widmer, J., & Handley, M. (2006). On TCP-friendly multicast congestion control (TFMCC). RFC 4654.

  27. Rizzo, L. (2000). pgmcc: a TCP-friendly single-rate multicast congestion control scheme. In Proceedings of the ACM SIGCOMM ’00, Stockholm, Sweden.

    Google Scholar 

  28. Bouras, Ch., Gkamas, A., & Kioumourtzis, G. (2010). Adaptive smooth multicast protocol for multimedia transmission: implementation details and performance evaluation. International Journal of Communication Systems, 23(3). doi:10.1002/dac.1059.

  29. Yang, R. Y., & Lam, S. S. (2000). General AIMD congestion control. Technical report TR-2000-09.

  30. Network simulation version 2. [Online]. Available: http://www.isi.edu/nsnam/ns/. Accessed September 2010.

  31. Gnuplot graphing utility version 4.4.2. [Online]. Available: http://www.gnuplot.info/. Accessed November 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolkarim Mardanian Dehkordi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardanian Dehkordi, A., Tabataba Vakili, V. An improved equation based rate adaptation scheme for video streaming over UMTS. Telecommun Syst 52, 271–283 (2013). https://doi.org/10.1007/s11235-011-9668-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9668-0

Keywords

Navigation