Skip to main content
Log in

Optimized admission control scheme for coexisting femtocell, wireless and wireline networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The most important challenge for the implementation of the Future Internet is to make the heterogeneity of access technologies transparent to the end user. Compared to the general case where the interworking networks are independent, the case of femtocells interworking with pre-existing wireless networks poses more challenges due to the sharing of the same backhaul capacity. Therefore, while a user is practically able to initiate the same service through multiple network interfaces, he is allocated capacity from the same capacity pool. However, while the femtocell inherits the QoS mechanisms of cellular networks and is able to provide a reliable CAC, this does not apply to the IP-based networks and that may drastically affect the performance of the femtocell. Hence, we propose an integrated Dynamic Service Admission Control (DSAC) framework for coexisting femtocell, wireless and wireline network environments. In particular, DSAC is able to provide QoS guarantees as a conventional capacity partitioning scheme while at the same time offers better performance in terms of acceptance probability and capacity utilization especially when short term variations of traffic load composition occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Stuckmann, P., & Zimmermann, R. (2009). European research on future Internet design. IEEE Wireless Communications, 16(5), 14–22.

    Article  Google Scholar 

  2. Sarakis, L., Kormentzas, G., & Guirao, F. M. (2009). Seamless service provision for multi heterogeneous access. IEEE Wireless Communications, 16(5), 32–40.

    Article  Google Scholar 

  3. Statovci-Halimi, B., Franzl, G. (2011). QoS differentiation and Internet neutrality. Springer Telecommunication Systems. doi:10.1007/s11235-011-9517-1

  4. Gustafsson, E., & Jonsson, A. (2003). Always best connected. IEEE Wireless Communications Magazine, 10(3), 49–55.

    Article  Google Scholar 

  5. Song, W., Zhuang, W., & Cheng, Y. (2007). Load balancing for cellular/WLAN integrated networks. IEEE Network, 21(1), 27–33.

    Article  Google Scholar 

  6. Zhang, J., & De La Roche, G. (2010). Femtocells: technologies and deployment. New York: Wiley. ISBN 978-0470742983.

    Book  Google Scholar 

  7. Tipmongkolsilp, O., Zaghloul, S., & Jukan, A. (2011). The evolution of cellular backhaul technologies: current issues and future trends. IEEE Communications Surveys & Tutorials, 13(1), 97–113.

    Article  Google Scholar 

  8. Chowdhurry, M. Z., et al. (2009). Dynamic SLA negotiation using bandwidth broker for femtocell networks. In Proceedings of 1st international conference on ubiquitous and future networks (ICUFN) (pp. 12–15).

    Google Scholar 

  9. Saunders, S., Carlaw, S., Giustina, A., Bhat, R. R., Rao, V. S., & Siegberg, R. (2009). Femtocells: opportunities and challenges for business and technology. New York: Wiley

    Google Scholar 

  10. De la Roche, G., Valcarce, A., Lopez-Perez, D., & Zhang, J. (2010). Access control mechanisms for femtocells. IEEE Communications Magazine, 48(1), 33–39.

    Article  Google Scholar 

  11. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009). Femtocell versus WiFi—a survey and comparison of architecture and performance. In Proceedings of 1st international conference on wireless communication, vehicular technology, information theory and aerospace & electronic systems technology (Wireless VITAE) (pp. 916–920).

    Chapter  Google Scholar 

  12. Ping, X., Chandrasekhar, V., & Andrews, J. G. (2010). Open vs. closed access femtocells in the uplink. IEEE Transactions on Wireless Communications, 9(12), 3798–3809.

    Article  Google Scholar 

  13. Navaie, K. (2011). On the interference management in wireless multi-user networks. Springer Telecommunication Systems, 46(2), 135–148.

    Article  Google Scholar 

  14. Valcarce, A., Lopez Perez, D., De la Roche, G., & Zhang, J. (2009). Limited access to OFDMA femtocells. In 20th IEEE international symposium on personal, indoor and mobile radio communications (PIMRC).

    Google Scholar 

  15. Fan, Z., & Sun, Y. (2010). Access and handover management for femtocell systems. In IEEE 71st vehicular technology conference (VTC 2010-spring).

    Google Scholar 

  16. Ko, C. H., & Wei, H. Y. (2011). On-demand resource sharing mechanism design in two-tier OFDMA femtocell networks. IEEE Transactions on Vehicular Technology, 60(3), 1059–1071.

    Article  Google Scholar 

  17. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: a survey. IEEE Communications Magazine, 46(9), 59–67.

    Article  Google Scholar 

  18. Knisely, D., Yoshizawa, T., & Favichia, F. (2009). Standardization of femtocells in 3GPP. IEEE Communications Magazine, 47(9), 68–75.

    Article  Google Scholar 

  19. 3GPP TS 22.220 V.10.3.0, Service Requirements for Home NodeBs (UMTS) and eNodeBs (LTE), Release 10 (2010).

  20. Niyato, D., & Hossain, E. (2005). Call admission control for QoS provisioning in 4G wireless networks: issues and approaches. IEEE Network Magazine, 19(5), 5–11.

    Article  Google Scholar 

  21. Iftikhar, M., Landfeldt, B., & Caglar, M. (2009). Towards the formation of comprehensive SLAs between heterogeneous wireless DiffServ domains. Springer Telecommunication Systems, 42(3–4), 179–199.

    Article  Google Scholar 

  22. Kulkarni, P., Chin, W. H., & Farnham, T. (2010). Radio resource management considerations for LTE femtocells. ACM SIGCOMM Computer Communication Review (CCR), 40(1), 26–30.

    Article  Google Scholar 

  23. Kang, S. B., et al. (2008). Soft QoS-based CAC scheme for WCDMA femtocell networks. In Proceedings of 10th international conference on advanced communication technology (ICACT) (pp. 409–412).

    Google Scholar 

  24. Makris, P., & Skianis, C. (2008). Multi-scenario based call admission control for coexisting heterogeneous wireless technologies. In IEEE global telecommunications conference (GLOBECOM), New Orleans, USA.

    Google Scholar 

  25. 3GPP TS 25.467 V.9.3.0, UTRAN Architecture for 3G Home Node B (HNB), Release 9 (2010).

  26. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., & Weiss, W. (1998). An architecture for differentiated services. RFC 2475.

  27. Wang, X. G., Min, G., Mellor, J. E., Al-Begain, K., & Guan, L. (2005). An adaptive QoS framework for integrated cellular and WLAN network. Elsevier Computer Networks Journal, 47(2), 167–183.

    Article  Google Scholar 

  28. 3GPP TS 23.107 V.9.1.0, Technical Specification Group Services and Systems Aspects; End-to-end Quality of Service (QoS) concept and architecture, Release 9 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios N. Skoutas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skoutas, D.N., Makris, P. & Skianis, C. Optimized admission control scheme for coexisting femtocell, wireless and wireline networks. Telecommun Syst 53, 357–371 (2013). https://doi.org/10.1007/s11235-013-9703-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9703-4

Keywords

Navigation