Skip to main content
Log in

A weighted fairness guarantee scheme based on node cooperation for multimedia WLAN mesh networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we focus on weighted fairness in multimedia WLAN mesh networks. Based on the analysis of the fairness problem of IEEE 802.11e Enhanced Distributed Channel Access (EDCA) scheme in WLAN mesh networks, we propose a weighted fairness guarantee scheme (WFGS), which provides weighted fairness for multimedia flows with different QoS requirements through node cooperation. WFGS piggybacks extra field in RTS/CTS frames to declare the channel occupation ratio of each flow. Accordingly, the transmitters can get the neighboring flows’ channel occupation ratio via overhearing the RTS/CTS frames from its neighbors, and cooperatively adjust the contention window size to achieve weighted fairness among the flows. Also, to reliably reserve transmissions, an adaptive power control based RTS/CTS handshake mechanism is introduced. Simulation results show that compared with EDCA scheme, WFGS can effectively resolve the collisions induced by the carrier interference and thereby guarantee both the short-term and long-term weighted fairness among multimedia flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kevin, P. S., Loren, P. R., & Terry, R. R. (2009). Addressing universal-broadband-service implications with wireless mesh networks. Telecommunications Systems, 41(1), 51–64.

    Article  Google Scholar 

  2. Wang, X., & Limb, A. O. (2008). IEEE 802.11s wireless mesh networks: framework and challenges. Ad Hoc Networks, 6(6), 970–984.

    Article  Google Scholar 

  3. Draft (2009). Standard for information technology-telecommunications and information exchange between systems-LAN/MAN specific requirements part 11: wireless medium access control (MAC) and physical layer (PHY) specifications: amendment 10: mesh networking. IEEE unapproved draft, IEEE P802.11s/D4.0, Dec. 2009.

  4. Ni, Q. (2005). Performance analysis and enhancements for IEEE 802.11e wireless networks. IEEE Network, 19(4), 21–27.

    Article  Google Scholar 

  5. Ferre, P., Doufexi, A., Nix, A., et al. (2004). In Throughput analysis of IEEE 802.11 and IEEE 802.11e MAC [C]. Wireless communications and networking conference (Vol. 2, pp. 783–788).

    Google Scholar 

  6. Xu, K., Wang, Q., & Hassanein, H. (2003). Performance analysis of differentiated QoS supported by IEEE 802.11e enhanced distributed coordination function (EDCF) in WLAN. In Global telecommunications conference (Vol. 2, pp. 1048–1053).

    Google Scholar 

  7. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications (1999). IEEE Standard 802.11-1999, IEEE Computer Society LAN MAN Standards Committee (Ed.)

  8. Xu, S., & Saadawi, T. (2001). Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks. IEEE Communications Magazine, 39(6), 130–137.

    Article  Google Scholar 

  9. Ramos, N., Panigrahi, D., & Dey, S. (2005). Quality of service provisioning in 802.11e networks: challenges, approaches, and future directions. IEEE Network, 19(4), 14–20.

    Article  Google Scholar 

  10. Lei, L., Zhu, Q., Zhou, J. H., & Cai, W. L. (2010). Analyzing and improving the simulation algorithm of IEEE 802.11 DCF error frame model in QualNet simulator. In International conference on multimedia information networking and security (pp. 187–191).

    Chapter  Google Scholar 

  11. Li, Z. F., Nandi, S., & Gupta, A. K. (2004). Achieving MAC fairness in wireless ad-hoc networks using adaptive transmission control. In IEEE symposium on computers and communications (Vol. 1, pp. 176–181).

    Google Scholar 

  12. Cui, H. X., & Wei, G. (2009). A novel backoff algorithm based on the tradeoff of efficiency and fairness for ad hoc networks. In International conference on communications and mobile computing (pp. 81–86).

    Google Scholar 

  13. Gupta, R., & Walrand, J. (2005). Achieving fairness in a distributed ad-hoc MAC. In Advances in control, communication networks, and transportation systems, systems and control: foundations & applications, part III (pp. 159–181).

    Google Scholar 

  14. Nafaa, A., Ksentini, A., Mehaoua, A., Ishibashi, B., Iraqi, Y., & Boutaba, R. (2005). Sliding contention window (SCW): towards backoff range-based service differentiation over IEEE 802.11 wireless LAN networks. IEEE Network, 19(4), 45–51.

    Article  Google Scholar 

  15. Nilsson, T., & Farooq, J. (2008). A Novel MAC scheme for solving the QoS parameter adjustment problem in IEEE 802.11e EDCA. WoWMoM, 1-9.

  16. He, R., & Fang, X. M. (2009). A fair MAC scheme for EDCA based wireless networks. In International conference on testbeds and research infrastructures for the development of networks & communities and workshops (pp. 1–6).

    Google Scholar 

  17. He, R., & Fang, X. M. (2009). A fair MAC algorithm with dynamic priority for 802.11e WLANs. In International conference on communication software and networks (pp. 255–259).

    Google Scholar 

  18. Cheng, R.-G., Chang, C.-J., Shih, C.-Y., & Chen, Y.-S. (2006). A new scheme to achieve weighted fairness for WLAN supporting multimedia services. IEEE Transactions on Wireless Communications, 5(5), 1095–1102.

    Article  Google Scholar 

  19. Li, Z., Nandi, S., & Gupta, A. K. (2004). Improving fairness in IEEE 802.11 using enhanced carrier sensing. IEE Proceedings. Communications, 5, 467–472.

    Google Scholar 

  20. Fang, Z. Y., & Bensaou, B. (2003). A novel topology-blind fair medium access control for wireless LAN and ad hoc networks. In IEEE international conference on communications (Vol. 2, pp. 1129–1134).

    Google Scholar 

  21. Lee, J. F., Liao, W. J., & Chen, M. C. (2005). In Proportional fairness for QoS enhancement in IEEE 802.11e WLANS. The IEEE conference on local computer networks (pp. 1–2).

    Google Scholar 

  22. Lee, J., Yoon, H., & Yeom, I. (2010). Distributed fair scheduling for wireless mesh networks using IEEE 802.11. IEEE Transactions on Vehicular Technology, 59(9), 4467–4475.

    Article  Google Scholar 

  23. Kwon, Y., Fang, Y. G., & Latchman, H. (2003). A novel MAC protocol with fast collision resolution for wireless LANs. In INFOCOM (Vol. 2, pp. 853–862).

    Google Scholar 

  24. Nandiraju, D., Nandiraju, N., & Agrawal, D.P. (2007). In Service differentiation in IEEE 802.11s mesh networks: a dual queue strategy. MILCOM (pp. 1–7).

    Google Scholar 

  25. Golestani, S. J. (1994). A self-clocked fair queueing scheme for broadband applications. In INFOCOM (Vol. 2, pp. 636–646).

    Google Scholar 

  26. Luo, H., Medvedev, P., Cheng, J., & Lu, S. (2001). A self-coordinating approach to distributed fair queueing in ad hoc wireless networks. In INFOCOM (pp. 1370–1379).

    Google Scholar 

  27. Luo, H., Cheng, J., & Lu, S. (2004). Self-coordinating localized fair queueing in wireless ad hoc networks. IEEE Transactions on Mobile Computing, 3(1), 86–98.

    Article  Google Scholar 

  28. Vaidya, N., Dugar, A., Gupta, S., & Bahl, P. (2005). Distributed fair scheduling in a wireless LAN. IEEE Transactions on Mobile Computing, 4(6), 616–629.

    Article  Google Scholar 

  29. Nandiraju, N. S., Nandiraju, D. S., Cavalcanti, D., & Agrawal, D. P. (2006). A novel queue management mechanism for improving performance of multihop flows in IEEE 802.11s based mesh networks. In 25th IEEE international performance, computing, and communications conference (pp. 161–168).

    Google Scholar 

  30. Basel, A., Chadi, M., & Hussein, M. (2009). Investigating the performance of power-aware IEEE 802.11 in multihop wireless networks. IEEE Transactions on Vehicular Technology, 58(1), 287–300.

    Article  Google Scholar 

  31. http://www.qualnet.com/ and related web pages it linked.

  32. Scalable Network Technologies, Inc. (2008). QualNet 4.5 programmer’s guide. March.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lei.

Additional information

This work is supported in part by National Natural Science Foundation of China (No. 61100195), Specialised Research Fund for the Doctoral Program of Higher Education of China (No. 20103218120022), Foundation of Graduate Innovation Center in NUAA (No. kfjj120113), Fundamental Research Funds for the Central Universities of China (No. NZ2012011, NS2012045), Aeronautical Science Foundation of China (No. 20110112003, 20090152001), and the PAPD of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, L., Zhou, J., Cai, S. et al. A weighted fairness guarantee scheme based on node cooperation for multimedia WLAN mesh networks. Telecommun Syst 54, 229–245 (2013). https://doi.org/10.1007/s11235-013-9730-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9730-1

Keywords

Navigation