Abstract
The Session Initiation Protocol (SIP) retransmission mechanism is designed to maintain reliable transmission over lossy or faulty network conditions. However, the retransmission can amplify the traffic overload faced by the SIP servers. In this paper, by modeling the interaction between an overloaded downstream server and its upstream server as a feedback control system, we propose two Proportional-Integral (PI) control algorithms to mitigate the overload by regulating the retransmission rate in the upstream server. We provide the design guidelines for both overload control algorithms to ensure the system stability. Our OPNET® simulation results demonstrate that: (1) without the control algorithm applied, the overload at a downstream server may propagate to its upstream servers and cause widespread network failure; (2) in case of short-term overload, both proposed feedback control solutions can mitigate the overload effectively without rejecting calls or reducing resource utilization, thus avoiding the disadvantages of existing overload control solutions for SIP networks.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
3GPP (2011). 3rd Generation Partnership Project. http://www.3gpp.org.
Abdelal, A., & Matragi, W. (2010). Signal-based overload control for SIP servers. In Proceedings of IEEE CCNC, Las Vegas, NV.
Amooee, A. M., & Falahati, A. (2009). Overcoming overload in IMS by employment of multiserver nodes and priority queues. In Proceedings of international conference on signal processing systems, Singapore (pp. 348–352).
Astrom, K. J., & Hagglund, T. (1995). PID controllers: theory, design, and tuning (2nd ed.). North Carolina: Instrument Society of America.
Astrom, K. J., & Murray, R. M. (2008). Feedback systems: an introduction for scientists and engineers. New Jersey: Princeton University Press.
Astrom, K. J., & Wittenmark, B. (1995). Adaptive control (2nd ed.). Boston: Addison-Wesley.
Astrom, K. J., Hagglund, T., Hang, C. C., & Ho, W. K. (1993). Automatic tuning and adaptation for PID controllers—a survey. Control Engineering Practice, 1(4), 699–714.
Astrom, K. J., Goodwin, G. C., & Kumar, P. R. (1995). The IMA volumes in mathematics and its applications: Vol. 74. Adaptive control, filtering, and signal processing. Berlin: Springer.
Bristol, E. H. (1986). The EXACT pattern recognition adaptive controllers, a user-oriented commercial success. adaptive and learning systems (pp. 149–163). New York: Plenum.
Cisco white paper (2005). DiffServ—the scalable end-to-end QoS model.
Dacosta, I., & Traynor, P. (2010). Proxychain: developing a robust and efficient authentication infrastructure for carrier-scale VoIP networks. In Proceedings of the USENIX annual technical conference, Boston, MA.
Dacosta, I., Balasubramaniyan, V., Ahamad, M., & Traynor, P. (2009). Improving authentication performance of distributed SIP proxies. In Proceedings of IPTComm, Atlanta, GA, July 2009.
Dang, T. D., Sonkoly, B., & Molnar, S. (2004). Fractal analysis and modeling of VoIP traffic. In Proceedings of international telecommunication network strategy and planning symposium, Vienna, Austria (pp. 123–130).
Desbourough, L., & Miller, R. (2002). Increasing customer value of industrial control performance monitoring—Honeywell’s experience. In AIChE symposium series: Vol. 98(326). Proceedings of sixth international conference on chemical process control.
Faccin, S. M., Lalwaney, P., & Patil, B. (2004). IP multimedia services: analysis of mobile IP and SIP interactions in 3G networks. IEEE Communications Magazine, 42(1), 113–120.
Garroppo, R. G., Giordano, S., Spagna, S., & Niccolini, S. (2009). Queuing strategies for local overload control in SIP server. In Proceedings of IEEE Globecom, Honolulu, Hawaii.
Geneiatakis, D., & Lambrinoudakis, C. (2007). A lightweight protection mechanism against signaling attacks in a SIP-based VoIP environment. Telecommunications Systems, 36(4), 153–159.
Geng, F., Wang, J., Zhao, L., & Wang, G. (2006). A SIP message overload transfer scheme. In Proceedings of ChinaCom, Beijing, China.
Govind, M., Sundaragopalan, S., Binu, K. S., & Saha, S. (2003). Retransmission in SIP over UDP—traffic engineering issues. In Proceedings of international conference on communication and broadband networking, Bangalore, India.
Gurbani, V. K., Jagadeesan, L. J., & Mendiratta, V. B. (2005). Characterizing Session Initiation Protocol (SIP) network performance and reliability. In Proceedings of 2nd international service availability symposium, Berlin, Germany (pp. 196–211).
Gurbani, V. K., Hilt, V., & Schulzrinne, H. (2011). Session Initiation Protocol (SIP) overload control (IETF internet-draft), draft-ietfsoc-overload-control-05.
Hilt, V., & Widjaja, I. (2008). Controlling overload in networks of SIP servers. In Proceedings of IEEE ICNP, Orlando, Florida (pp. 83–93).
Hilt, V., Noel, E., Shen, C., & Abdelal, A. (2011). Design considerations for Session Initiation Protocol (SIP) overload control (IETF internet-draft), draft-hilt-soc-overload-design-06.
Ho, W. K., Lee, T. H., Han, H. P., & Hong, Y. (2001). Self-tuning IMC-PID control with interval gain and phase margin assignment. IEEE Transactions on Control Systems Technology, 9(3), 535–541.
Ho, W. K., Hong, Y., Hansson, A., Hjalmarsson, H., & Deng, J. W. (2003). Relay auto-tuning of PID controllers using iterative feedback tuning. Automatica, 39(1), 149–157.
Homayouni, M., Jahanbakhsh, M., Azhari, V., & Akbari, A. (2010). Controlling overload in SIP proxies: an adaptive window based approach using no explicit feedback. In Proceedings of IEEE Globecom, Miami, FL.
Hong, Y., Huang, C., & Yan, J. (2010). Analysis of SIP retransmission probability using a Markov-modulated Poisson process model. In Proceedings of IEEE/IFIP network operations and management symposium, Osaka, Japan (pp. 179–186).
Hong, Y., Huang, C., & Yan, J. (2010). Mitigating SIP overload using a control-theoretic approach. In Proceedings of IEEE Globecom, Miami, FL.
Hong, Y., Huang, C., & Yan, J. (2010). Stability condition for SIP retransmission mechanism: analysis and performance evaluation. In Proceedings of IEEE SPECTS, Ottawa, Canada (pp. 387–394).
Hong, Y., Huang, C., & Yan, J. (2011). Controlling retransmission rate for mitigating SIP overload. In Proceedings of IEEE ICC, Kyoto, Japan.
Hong, Y., Huang, C., & Yan, J. (2011). Design of a PI rate controller for mitigating SIP overload. In Proceedings of IEEE ICC, Kyoto, Japan.
Hong, Y., Huang, C., & Yan, J. (2011). Modeling and simulation of SIP tandem server with finite buffer. ACM Transactions on Modeling and Computer Simulation, 21(2).
Hong, Y., Huang, C., & Yan, J. (2012). A comparative study of SIP overload control algorithms. In J. Abawajy, M. Pathan, M. Rahman, A. K. Pathan, & M. M. Deris (Eds.), Internet and distributed computing advancements: theoretical frameworks and practical applications, Hershey: IGI Global.
Hong, Y., Huang, C., & Yan, J. (2012, in press). Modeling chaotic behaviour of SIP retransmission mechanism. International Journal of Parallel, Emergent and Distributed Systems.
Internet traffic report (2010). http://www.internettrafficreport.com/.
IPTEL (2011). SIP express router. http://www.iptel.org/ser/.
Jiang, H., Iyengar, A., Nahum, E., Segmuller, W., Tantawi, A., & Wright, C. (2009). Load balancing for SIP server clusters. In Proceedings of IEEE INFOCOM, Rio de Janeiro, Brazil (pp. 2286–2294).
Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth delay product networks. In Proceedings of ACM SIGCOMM, Pittsburgh, PA.
Kitatsuji, Y., Noishiki, Y., Itou, M., & Yokota, H. (2010). Service initiation procedure with on-demand UE registration for scalable IMS services. In Proceedings of the fifth international conference on mobile computing and ubiquitous networking, Seattle, WA.
Montagna, S., & Pignolo, M. (2010). Comparison between two approaches to overload control in a real server: “local” or “hybrid” solutions? In Proceedings of IEEE MELECON, Valletta, Malta (pp. 845–849).
Nahm, E. M., Tracey, J., & Wright, C. P. (2007). Evaluating SIP server performance. In Proceedings of ACM SIGMETRICS, San Diego, CA (pp. 349–350).
Noel, E., & Johnson, C. R. (2007). Initial simulation results that analyze SIP based VoIP networks under overload. In Proceedings of 20th international teletraffic Congress, Ottawa, Canada (pp. 54–64).
Noel, E., & Johnson, C. R. (2009). Novel overload controls for SIP networks. In Proceedings of 21st international teletraffic congress, Paris, France.
Ogata, K. (2002). Modern control engineering (4th ed.). New Jersey: Prentice Hall.
Ohta, M. (2006). Overload control in a SIP signaling network. In Proceeding of World Academy of Science, engineering and technology, Vienna, Austria (pp. 205–210).
Ohta, M. (2006). Overload protection in a SIP signaling network. In Proceedings of international conference on Internet surveillance and protection, Cap Esterel, France.
OPNET Technologies Inc. (2003). OPNET modeler manuals, OPNET version 10.0.
Rebahi, Y., Pallares, J. J., Vingarzan, D., Onofrei, A. A., Gouveia, F., & Magedanz, T. (2011). A priority queuing model for IMS-based emergency services. In Proceedings of IEEE CCNC, Las Vegas, NV.
Rosenberg, J. (2008). Requirements for management of overload in the Session Initiation Protocol (IETF RFC 5390).
Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., & Schooler, E. (2002). SIP: Session Initiation Protocol. In IETF RFC 3261, June 2002.
Sadhukhan, P., Das, P. K., & Saha, S. (2011). Hybrid mobility management schemes integrating mobile IP and SIP for seamless invocation of services in all-IP network. Telecommunications Systems. doi:10.1007/s11235-011-9483-7. Online first.
Shen, C., & Schulzrinne, H. (2010). On TCP-based SIP server overload control. In Proceedings of IPTComm, Munich, Germany.
Shen, C., Schulzrinne, H., & Nahum, E. (2008). SIP server overload control: design and evaluation. In Proceedings of IPTComm, Heidelberg, Germany.
Subramanian, S. V., & Dutta, R. (2009). Measurements and analysis of M/M/1 and M/M/c queuing models of the SIP proxy server. In Proceedings of IEEE ICCCN, San Francisco, CA (pp. 397–402).
Sukhov, A., Calyam, P., Daly, W., & Illin, A. (2005). Towards an analytical model for characterizing behaviour of high-speed VoIP applications. In Proceedings of TERENA networking conference, Poznan, Poland.
Sun, J., Tian, R., Hu, J., & Yang, B. (2009). Rate-based SIP flow management for SLA satisfaction. In Proceedings of IEEE/IFIP IM, New York, NY (pp. 125–128).
Usui, T., Kitatsuji, Y., & Yokota, H. (2011). A study on traffic management cooperating with IMS in MPLS networks. Telecommunications Systems, 52(2), 671–680.
Wang, Y. G. (2010). SIP overload control: a backpressure-based approach. Computer Communication Review, 40(4), 399–400.
Xu, L., Huang, C., Yan, J., & Drwiega, T. (2009). De-registration based s-CSCF load balancing in IMS core network. In Proceedings of IEEE ICC, Dresden, Germany.
Yang, J., Huang, F., & Gou, S. Z. (2009). An optimized algorithm for overload control of SIP signaling network. In Proceedings of 5th international conference on wireless communications, networking and mobile computing, Beijing, China.
Zhang, G., Fischer-Hübner, S., & Ehlert, S. (2010). Blocking attacks on SIP VoIP proxies caused by external processing. Telecommunications Systems, 45(1), 61–76.
Shen, C., Nahum, E., Schulzrinne, H., & Wright, C. P. (2012). The Impact of TLS on SIP Server Performance: Measurement and Modeling. IEEE/ACM Transactions on Networking, 20(4), 1217–1230.
Acknowledgement
The authors would like to thank the anonymous reviewers whose comments help to improve the quality of this paper. This work was supported by the NSERC grant #CRDPJ 354729-07 and the OCE grant #CA-ST-150764-8. OPNET simulation codes for RRRC and RTDC algorithms in this paper are available for non-commercial research use upon request.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hong, Y., Huang, C. & Yan, J. Applying control theoretic approach to mitigate SIP overload. Telecommun Syst 54, 387–404 (2013). https://doi.org/10.1007/s11235-013-9744-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-013-9744-8