Skip to main content

Advertisement

Log in

High reliability of real-time visual data transmission using superposition coding with receiver diversity

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Supporting visual data applications in the real-time communication systems are among the most challenging issues over the next generation wireless communication systems. This challenge is further magnified by the fact that the quality of reception is highly sensitive to transmission delay, data losses and bit error rate (BER) in such applications. In this paper, we proposed Superposition Coding with Receiver Diversity (SPC-RD) scheme, which employs unequal error protection (UEP) to improve the error performance, maximize the received signal to noise ratio (SNR) and optimize the reliability of the transmission system. In the transmitter side, the visual data is divided into a number of different priority layers based on their effects on the reception quality. These layers are modulated individually where the highest priority layer is modulated with the highest UEP level against error-prone channels, and vice versa. These modulated signals are then superimposed together and transmitted via wireless Single-Input Multiple-Output (SIMO) Rayleigh fading channel. In the receiver side, three different diversity combining approaches; selection combining (SC), equal gain combining (EGC) and maximal ratio combining (MRC) are considered. The combined signal is then passed through a multiuser demodulator so-called the ordered successive interference cancellation (O-SIC) demodulator to reconstruct and separate the data layers. This demodulation technique is evaluated and compared with the traditionally maximum likelihood joint detection (MLJD) technique. Extensive simulations have been carried out to validate the various assertions. Under the assumption of equal transmission power, the simulation results illustrate that the proposed SPC-RD scheme provides a SNR gain of 14.5 dB over the Rayleigh fading channel at the diversity order of three for the acceptable BER level of 10−3 when BPSK scheme is exploited compared to the traditional equal error protection system. In addition, the proposed scheme with O-SIC demodulation technique achieves almost similar performance compared to MLJD technique but using less computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pollock, T. S., Abhayapala, T. D., & Kennedy, R. A. (2003). Introducing space into MIMO capacity calculations. Telecommunications Systems, 24, 415–436.

    Article  Google Scholar 

  2. Yang, L.-L. (2010). Receiver multiuser diversity aided multi-stage minimum mean-square error detection for heavily loaded DS-CDMA and SDMA systems. IEEE Transactions on Communications, 58(12), 3397–3404.

    Article  Google Scholar 

  3. Yang, J. (1999). Diversity receiver scheme and system performance evaluation for a CDMA system. IEEE Transactions on Communications, 47(2), 272–280.

    Article  Google Scholar 

  4. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(10), 1451–1458.

    Article  Google Scholar 

  5. Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  6. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory, 44(3), 744–765.

    Article  Google Scholar 

  7. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  Google Scholar 

  8. Goldsmith, A. (2005). Wireless communications (1st ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  9. Belmega, E.-V., Lasaulce, S., Debbah, M., Jungers, M., & Dumont, J. (2011). Power allocation games in wireless networks of multi-antenna terminals. Telecommunications Systems, 47, 109–122.

    Article  Google Scholar 

  10. Hormis, R., Linzer, E., & Wang, X. (2009). Adaptive mode- and diversity-control for video transmission on MIMO wireless channels. IEEE Transactions on Signal Processing, 57(9), 3624–3637.

    Article  Google Scholar 

  11. Hussain, S., Azim, A., & Hyuk Park, J. (2009). Energy efficient virtual MIMO communication for wireless sensor networks. Telecommunications Systems, 42, 139–149.

    Article  Google Scholar 

  12. Pei, Y., & Modestino, J. W. (2006). Performance of multilayered video encoding and delivery over lossy channels using a joint source-channel coding approach. Wireless Personal Communications, 36, 113–128.

    Article  Google Scholar 

  13. Tahir, Y. H., Kyun Ng, C., Noordin, N. K., Ali, B. M., & Sabira, K. (2010). Adaptive real time wireless data transmission using superposition coding with feedback of channel state information. Scientific Research and Essays, 5(22), 3490–3498.

    Google Scholar 

  14. Tahir, Y. H., Kyun Ng, C., Noordin, N. K., Ali, B. M., & Sabira, K. (2009). Unequally error protected wireless data transmission using channel state information and adaptive encoders. Journal of Computer Science, 5(12), 1095–1100.

    Article  Google Scholar 

  15. Seckin, G., & Golshani, F. (2000). Real-time transmission of multilayer video over ATM networks. Computer Communications, 23, 962–974.

    Article  Google Scholar 

  16. Wang, Y., Wenger, S., Wen, J., & Katsaggelos, A. (2000). Error resilient video coding techniques. IEEE Signal Processing Magazine, 17(4), 61–82.

    Article  Google Scholar 

  17. Goldsmith, A. J., & Effros, M. (1998). Joint design of fixed-rate source codes and multiresolution channel codes. IEEE Transactions on Communications, 46(10), 1301–1312.

    Article  Google Scholar 

  18. Farvardin, N., & Vaishampayan, V. (1987). Optimal quantizer design for noisy channels: an approach to combined source-channel coding. IEEE Transactions on Information Theory, IT-33(11), 827–838.

    Article  Google Scholar 

  19. Sherwood, P., & Zeger, K. (1998). Error protection for progressive image transmission over memoryless and fading channels. IEEE Transactions on Communications, 46(12), 1555–1559.

    Article  Google Scholar 

  20. Wu, D., Hou, T., & Zhang, Y.-Q. (2001). Scalable video coding and transport over broadband wireless networks. In Proceedings of the IEEE, special issue on multi-dimensional broadband wireless technologies and applications (Vol. 89, pp. 6–20).

    Google Scholar 

  21. Vass, J., Zhuang, S., & Zhuang, X. (2001). Scalable, error-resilient, and high-performance video communications in mobile wireless environments. IEEE Transactions on Circuits and Systems for Video Technology, 11(7), 833–847.

    Article  Google Scholar 

  22. Stankovic, V., Hamzaoui, R., & Xiong, Z. (2002). Joint product code optimization for scalable multimedia transmission over wireless channels. In Proc. of ICME’02.

    Google Scholar 

  23. Kondi, L. P., Ishtiaq, F., & Katsaggelos, A. K. (2002). Joint source-channel coding for motion-compensated DCT-based SNR scalable video. IEEE Transactions on Image Processing, 11(9), 1043–1052.

    Article  Google Scholar 

  24. Fei, Z., & Yang, M. (2005). Intra-session fairness in multicast communications. Telecommunications Systems, 29, 235–255.

    Article  Google Scholar 

  25. Alay, O., Korakis, T., Wang, Y., Erkip, E., & Panwar, S. S. (2010). Layered wireless video multicast using relays. IEEE Transactions on Circuits and Systems for Video Technology, 20(8), 1095–1109.

    Article  Google Scholar 

  26. Xu, J., (Sherman) Shen, X., Mark Life, J. W., & Cai, J. (2008). Quasi-optimal channel assignment for real-time video in OFDM wireless systems. IEEE Transactions on Wireless Communications, 7(4), 1417–1427.

    Article  Google Scholar 

  27. Wang, C.-X., P¨atzold, M., & Yuan, D. (2007). Accurate and efficient simulation of multiple uncorrelated rayleigh fading waveforms. IEEE Transactions on Wireless Communications, 6(3), 833–839.

    Article  Google Scholar 

  28. Zheng, Y. R., & Xiao, C. (2002). Improved models for the generation of multiple uncorrelated rayleigh fading waveforms. IEEE Communications Letters, 6(6), 256–258.

    Article  Google Scholar 

  29. Jaber, N., Tepe, K. E., & Abdel-Raheem, E. (2011). Reconfigurable simulator using graphical user interface (GUI) and object-oriented design for OFDM systems. Simulation Modelling Practice and Theory, 19, 1294–1317.

    Article  Google Scholar 

  30. Tan, K., Wu, D., Chan, A. J., & Mohapatra, P. (2010). Comparing simulation tools and experimental testbeds for wireless mesh networks. In IEEE international symposium on a digital object identifier (pp. 1–9).

    Google Scholar 

  31. Tahir, Y. H., Al-Hussaibi, W., Ng, C. K., Noordin, N. K., & Al-Hemyari, A. (2008). Unequal error protection for wireless data transmission using superposition coding with feedback. In Proceeding of the IEEE international conference on innovations in information technology (pp. 426–429). USA: IEEE Xplore.

    Google Scholar 

  32. Tahir, Y. H., Ng, C. K., Noordin, N. K., Ali, B. M., & Khatum, S. (2009). Unequally error protected wireless data transmission using channel state information and adaptive encoders. Journal of Computer Science, 5(12), 1095–1100.

    Article  Google Scholar 

  33. Cronie, H. S. (2007). Superposition coding for power- and bandwidth efficient communication over the Gaussian channel. Proceeding of the IEEE international symposium on information theory. USA: IEEE Xplore.

    Google Scholar 

  34. Al-Regib, G., Yucel, A., & Jarek, R. (2002). An unequal error protection method for progressively compressed 3-D meshes. In ICASSP’02 IEEE international conference (Vol. 2, pp. 2041–2044).

    Google Scholar 

  35. Karabulut, G., & Yongacoglu, A. (2003). Superposition block coded modulation. In IEEE CCECE (Vol. 3, pp. 1629–1632).

    Google Scholar 

  36. Karabulut, G., & Yongacoglu, A. (2004). Rate design rule for superposition coded modulation. In IEEE CCECE (Vol. 1, pp. 365–368).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Kyun Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahir, Y.H., Al-Hussaibi, W., Ng, C.K. et al. High reliability of real-time visual data transmission using superposition coding with receiver diversity. Telecommun Syst 57, 107–118 (2014). https://doi.org/10.1007/s11235-013-9785-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9785-z

Keywords

Navigation