Skip to main content
Log in

Modeling fast link adaptation-based 802.11n distributed coordination function

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive performance study of closed-loop fast link adaptation (FLA) in the context of IEEE 802.11n, spanning the physical (PHY) and medium-access control (MAC) layers. In particular, a semi-analytical model is derived for Basic and request to send/clear to send (RTS/CTS) access schemes of the distributed coordination function (DCF), that applies to both, open- and closed-loop strategies. Numerical results serve to demonstrate the accuracy of the proposed model and the superiority of FLA, in terms of MAC goodput, in comparison to open-loop policies. Realistic operating conditions such as outdated feedback information and the use of statistical packet length distributions, issues not treated in previous studies, have also been considered. Moreover, it is shown that incorporating a time-out mechanism in the FLA scheme, weighing down the influence of channel information as this becomes outdated, is a useful strategy to counteract its deleterious effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Wrapper control frame that encapsulates the ACK and the HT control field required to feedback the MCS selection.

  2. Slot with a lower probability to be accessed than the average (see [15] for more details).

  3. Configured to m max =4 or m max =6 in order to be compared to the new model using m max =6 with R=4 or R=7, respectively.

  4. The Jain’s fairness measure used in this paper is calculated as \(I=\frac{ (\sum^{n}_{i}\beta_{i} )^{2}}{n\sum^{n}_{i} \beta_{i}^{2}}\) where β i denotes the average number of transmissions for STA i. Note that \(I=\frac{1}{n}\) implies an unfair system and I=1 reflects a completely fair system.

References

  1. IEEE (2009) IEEE Std 802.11n-2009, Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 5: Enhancements for higher throughput.

  2. Kamerman, A., & Monteban, L. (1997). WaveLAN®-II: a high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133.

    Article  Google Scholar 

  3. Kim, S., Verma, L., Choi, S., & Qiao, D. (2010). Collision-aware rate adaptation in multi-rate WLANs: design and implementation. Computer Networks, 54(17), 3011–3030.

    Article  Google Scholar 

  4. Joshi, T., Ahuja, D., Singh, D., & Agrawal, D. (2008). SARA: stochastic automata rate adaptation for IEEE 802.11 networks. IEEE Transactions on Parallel and Distributed Systems, 19(11), 1579–1590.

    Article  Google Scholar 

  5. He, J., Kaleshi, D., Munro, A., & McGeehan, J. (2006). Modeling link adaptation algorithm for IEEE 802.11 wireless LAN networks. In IEEE ISWCS, Valencia, Spain, Sept. 2006.

    Google Scholar 

  6. Jung, H., Kwon, T., Choi, Y., & Seok, Y. (2007) A scalable rate adaptation mechanism for IEEE 802.11e wireless LANs. In IEEE FGCN, Jeju-Island, Korea, Dec. 2007.

    Google Scholar 

  7. Zhang, J., Tan, K., Zhao, J., Wu, H., & Zhang, Y. (2008). A practical SNR-guided rate adaptation. In IEEE INFOCOM, Phoenix, AZ, April 2008.

    Google Scholar 

  8. Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. In ACM MobiCom (pp. 236–251).

    Google Scholar 

  9. Choi, J., Na, J., sup Lim, Y., Park, K., & kwon Kim, C. (2008). Collision-aware design of rate adaptation for multi-rate 802.11 WLANs. IEEE Journal on Selected Areas in Communications, 26(8), 1366–1375.

    Article  Google Scholar 

  10. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  11. Park, C., Han, D., & Ahn, S. (2006). Performance analysis of MAC layer protocols in the IEEE 802.11 wireless LAN. Telecommunications Systems, 33, 233–253.

    Article  Google Scholar 

  12. Szczypiorski, K., & Lubacz, J. (2008). Saturation throughput analysis of IEEE 802.11g (ERP-OFDM) networks. Telecommunications Systems, 38, 45–52.

    Article  Google Scholar 

  13. Martorell, G., Riera-Palou, F., & Femenias, G. (2009). Cross-layer link adaptation for IEEE 802.11n. In IEEE IWCLD, Palma, Spain, June 2009.

    Google Scholar 

  14. Martorell, G., Riera-Palou, F., & Femenias, G. (2011). Cross-layer fast link adaptation for MIMO-OFDM based WLANs. Wireless Personal Communications, 56(3), 599–609.

    Article  Google Scholar 

  15. Tinnirello, I., Bianchi, G., & Xiao, Y. (2010). Refinements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Transactions on Vehicular Technology, 59(3), 1055–1067.

    Article  Google Scholar 

  16. Chen, H. (2011). Revisit of the Markov model of IEEE 802.11 DCF for an error-prone channel. IEEE Communications Letters, 15(12), 1278–1280.

    Article  Google Scholar 

  17. Martorell, G., Riera-Palou, F., & Femenias, G. (2011). DCF performance analysis of open- and closed-loop adaptive IEEE 802.11n networks. In IEEE ICC, Kyoto, Japan, June 2011.

    Google Scholar 

  18. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  19. Choi, Y.-S., & Alamouti, S. (2008). A pragmatic PHY abstraction technique for link adaptation and MIMO switching. IEEE Journal on Selected Areas in Communications, 26(6), 960–971.

    Article  Google Scholar 

  20. Foschini, G. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  21. Ghaboosi, K., Latva-aho, M., & Pomalaza-Ráez, C. (2008). A novel MAC protocol and layer two transmission scheduling algorithm for WLANs. Telecommunications Systems, 37, 3–18.

    Article  Google Scholar 

  22. Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. In ACM MobiCom, Rome, Italy.

    Google Scholar 

  23. Kermoal, J., Schumacher, L., Pedersen, K., Mogensen, P., & Frederiksen, F. (2002). A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications, 20(6), 1211–1226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Martorell.

Additional information

This work has been partially funded by MEC and FEDER through project COSMOS (TEC2008-02422), AM3DIO (TEC2011-25446) and Conselleria d’Educació, Cultura i Universitats del Govern de les Illes Balears through a PhD grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martorell, G., Riera-Palou, F. & Femenias, G. Modeling fast link adaptation-based 802.11n distributed coordination function. Telecommun Syst 56, 215–227 (2014). https://doi.org/10.1007/s11235-013-9831-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9831-x

Keywords

Navigation