Skip to main content
Log in

Efficient FPGA implementation of a STBC-OFDM combiner for an IEEE 802.16 software radio receiver

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, an efficient FPGA implementation of a 4×4 Space-Time Block Coding (STBC) combiner for MIMO-OFDM software radio receivers is considered. The proposed combiner is based on a low-complexity algorithm which reduces the interference due to the Quasi-Orthogonality of the STBC decoding. In the literature, feedback techniques have been proposed to solve this problem. However, the algorithm introduced in this paper has been conceived in order to avoid the transmission feedback, by estimating the interference factors and removing them. The proposed algorithm exhibits a low computational complexity and complies with the requirements of HW feasibility, considering the execution time/area occupation trade-off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hanzo, L., Akhtman, Y., Wang, L., & Jiang, M. (2011). MIMO-OFDM for LTE, WiFi and WiMAX: coherent versus non-coherent and cooperative turbo transceivers. New York: Wiley–IEEE Press.

    Google Scholar 

  2. Gesbert, D., Shafi, M., et al. (2003). From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–301.

    Article  Google Scholar 

  3. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  4. Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  5. Heath, R. V., & Paulraj, A. J. (2005). Switching between diversity and multiplexing in MIMO systems. IEEE Transactions on Communications, 53(6), 962–968.

    Article  Google Scholar 

  6. Bian, Y. Q., Nix, A. R., Tameh, E., & McGeehan, J. (2008). MIMO-OFDM WLAN architectures, area coverage and link adaptation for urban hotspots. IEEE Transactions on Vehicular Technology, 57(4), 2364–2374.

    Article  Google Scholar 

  7. Chung, J., Yun, Y., & Choi, S. (2011). Experiments on MIMO-OFDM system combine with adaptive beamforming based on IEEE 802.16e WMAN standard. Telecommunication Systems. doi:10.1007/s11235-011-9475-7.

    Google Scholar 

  8. Aruna, T., & Suganthi, M. (2010). Variable power adaptive MIMO OFDM system under imperfect CSI for mobile ad hoc networks. Telecommunication Systems. doi:10.1007/s1235-010-9387-y.

    Google Scholar 

  9. Gupta, A., Forenza, A., & Heat, R. W. (2004). Rapid MIMO-OFDM software defined radio system prototyping. In Proc. of 2004 IEEE workshop on signal processing systems (SIPS 2004), Austin, TX, 13–15 October 2004 (pp. 182–186).

    Chapter  Google Scholar 

  10. Li, X., Hu, W., Yousefi’zadeh, H., & Qureshi, A. (2008). A case study of a MIMO SDR implementation. In Proc. of IEEE MILCOM 2008 conf, San Diego, CA, 16–19 Nov. 2008 (pp. 1–7).

    Google Scholar 

  11. Palkovic, M., Capelle, H., Glassee, M., Bougard, B., & Van der Perre, L. (2008). Mapping of 40 MHz MIMO SDM-OFDM baseband processing on multi-processor SDR platform. In Proc. of 11th IEEE workshop on design and diagnostics of electronic circuits and systems (DDECS 2008), Bratislava, SK, 16–18 Apr. 2008, available on CD-ROM.

    Google Scholar 

  12. Pan, H. K., Tsai, J., Golden, S., Nair, V. K., & Bernhard, J. T. (2008). Reconfigurable antenna implementation in multi-radio platform. In Proc. of IEEE antennas and propagat. symp. (AP-S 2008), San Diego, CA, 5–11 July 2008, available on CD-ROM.

    Google Scholar 

  13. Thomos, C., & Kalivalas, G. (2011). FPGA-based architecture and implementation techniques of a low-complexity hybrid RAKE receiver for a DS-UWB communication system. Telecommunication Systems. doi:10.1007/s11235-011-9487-3.

    Google Scholar 

  14. Haene, S., Perels, D., & Burg, A. (2008). A real-time 4-stream MIMO-OFDM transceiver: system design, FPGA implementation and characterization. IEEE Journal on Selected Areas in Communications, 26(6), 877–889.

    Article  Google Scholar 

  15. Wang, J., & Sobelman, G. E. (2011). Joint MIMO transceiver design based on uniform channel decomposition. Electronics Letters, 47(5), 1–2.

    Google Scholar 

  16. Yu, S., Im, T. H., Park, C. H., Kim, J., & Cho, Y. S. (2008). An FPGA implementation of MML-DFE for spatial multiplexed MIMO systems. IEEE Transactions on Circuits and Systems. II, Express Briefs, 55(7), 705–709.

    Google Scholar 

  17. Boher, L., Rabineau, R., & Helard, M. (2008). FPGA implementation of an iterative receiver for MIMO-OFDM systems. IEEE Journal on Selected Areas in Communications, 26(6), 857–866.

    Article  Google Scholar 

  18. Huang, X., Liang, C., & Ma, J. (2008). System architecture and implementation of MIMO sphere decoders on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(2), 188–197.

    Article  Google Scholar 

  19. IEEE Standard 802.16-2004, Part 16: Air interface for fixed broadband wireless access systems, October 2004, http://ieee802.org/16/published.html.

  20. Kaiser, T., Bourdoux, A. et al. (Eds.) (2005). EURASIP series on signal processing and communications. Smart antennas—state of the art. New York: Hindawi.

    Google Scholar 

  21. Volder, J. E. (1959). The CORDIC trigonometric computing technique. IRE Transactions on Electronic Computers, EC-8, 330–334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea F. Cattoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattoni, A.F., Le Moullec, Y. & Sacchi, C. Efficient FPGA implementation of a STBC-OFDM combiner for an IEEE 802.16 software radio receiver. Telecommun Syst 56, 245–255 (2014). https://doi.org/10.1007/s11235-013-9833-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9833-8

Keywords

Navigation