Skip to main content
Log in

A stochastic model to study the impact of the transmission frequency of hello messages on the connectivity of ad hoc networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we exploit the utility of Hello messages in the Ad hoc networks to study the impact of their transmission frequencies on the connectivity of the network. Assuming that the Hello messages arrive at a given node according to a Poisson process, we model a cluster-head motion (respectively an ordinary node motion) using a random process. This model allows us to find the critical value of the transmission frequency of Hello messages. We also have investigate a fundamental property of an Ad hoc network: its connectivity. We then analyze the number of neighbors of a given node, the isolation probability, the handoff probability and the probability that the considered network is connected, i.e. each node can communicate with an other node via the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adel-Aissanou, K., & Aissani, D. (2009). Gateway discovery for ad hoc nodes. International Review on Computers and Software, 4(6), 714–717.

    Google Scholar 

  2. Adel-Aissanou, K., Aissani, D., & Djellab, N. (2012). Distribution of the maximum waiting time of a hello message in ad hoc networks. International Journal of Computer Applications, 47(14). doi:10.5120/7253-0068.

  3. Al Hanbali, A., Nain, P., & Altman, E. (2008). Performance of ad hoc networks with two-hop relay routing and limited packet lifetime (extended version). Performance Evaluation, 65, 463–483.

    Article  Google Scholar 

  4. Ali, H. M., Naimai, A. M., Busson, A., & Veque, V. (2009). Signal strength based link sensing for mobile ad-hoc networks. Telecommunication Systems, 42(3,4), 201–212.

    Article  Google Scholar 

  5. Bettstetter, C. (2004). On the connectivity of ad hoc networks. The Computer Journal, 47, 442–447.

    Article  Google Scholar 

  6. Chakers, I. D., & Beding-Royer, E. M. (2002). The utility of hello messages for determining link connectivity. In The proc. of the 5th international symposium on wireless personal multimedia communications (Vol. 2, pp. 504–508).

    Chapter  Google Scholar 

  7. Chatterjee, M., Das, S., & Turgut, D. (2002). WCA: a weighted clustering algorithm for mobile ad hoc networks. Journal of Cluster Computing, 5, 193–204. (special issue on mobile ad hoc network)

    Article  Google Scholar 

  8. Chen, Y., & Liestman, A. (2003). A zonal algorithm for clustering ad-hoc networks. International Journal of Foundations of Computer Science, 14(2), 305–322.

    Article  Google Scholar 

  9. Colding, E. A., Bearon, R. N., & Thorn, G. J. (2010). Diffusion about the mean drift location in a biased random walk. Ecology, 91(10), 3106–3113.

    Article  Google Scholar 

  10. Gelenbe, E. (2007). A diffusion model for packet travel time in a random multi-hop medium. ACM Transactions on Sensor Networks, 2. doi:10.1145/1240226.1240230.

  11. Gerla, M., & Tsai, J. (1995). Multi-cluster mobile multimedia radio network. ACM/Baltzer Wireless Networks Journal, 95, 255–265.

    Article  Google Scholar 

  12. Giruka, V., & Singhal, M. (2005). Hello protocols for ad hoc networks: overhead and accuracy trade-offs. In The sixth IEEE international symposium on a world of wireless mobile and multimedia networks (WoWMoM), Taormina–Giardini Naxos, Italy.

    Google Scholar 

  13. Gomez, C., Cuevas, A., & Paradells, J. (2006). A two-state adaptive mechanism for link connectivity maintenance in AODV. In The international symposium on mobile ad hoc networking and computing, Florence, Italy.

    Google Scholar 

  14. Groenevelt, R., Nain, P., & Koole, G. (2005). The message delay in mobile ad hoc networks. Performance Evaluation, 62, 210–228.

    Article  Google Scholar 

  15. Hwang, S. K., & Kim, D. S. (2007). Markov model of link connectivity in mobile ad hoc networks. Telecommunication Systems, 34, 51–58.

    Article  Google Scholar 

  16. Ingelrest, F., Mitton, N., & Simplot-Ryl, D. (2007). A turnover based adaptive HELLO protocol for mobile ad hoc and sensor networks. In Proc. 15th IEEE international symposium on modeling, analysis, and simulation of computer and telecommunication systems (MASCOTS 07), Bogazici University, Istanbul, Turkey.

    Google Scholar 

  17. Kobayashi, H. (1981). Modeling and analysis, an introduction to system performance evaluation methodology. Reading: Addison-Wesley.

    Google Scholar 

  18. Kolesnik, A. D., & Orsingher, E. (2005). A planar random motion with an infinite number of directions colled by damped wave equation. Journal of Applied Probability, 42, 1168–1182.

    Article  Google Scholar 

  19. Miorandi, D., & Altman, E. (2005). Coverage and connectivity of ad hoc networks in presence of channel randomness. In Proc. IEEE INFOCOM (pp. 491–502).

    Google Scholar 

  20. Mitton, N., Paroux, K., Sericola, B., & Tixeuil, S. (2008). Ascending runs in dependent uniformly distributed random variables: application to wireless networks. Methodology and Computing in Applied Probability, 12, 51–62.

    Article  Google Scholar 

  21. Moy, J. (1994). OSPF—open shortest path first. RFC 1583.

  22. Nayebi, A., & Sarbazi-Azad, H. (2011). Optimum hello interval for a connected homogeneous topology in mobile wireless sensor networks. Telecommunication Systems doi:10.1007/s11235-011-9567-4.

    Google Scholar 

  23. Niculescu, D., & Nath, B. (2003). DV based positioning in ad hoc networks. Telecommunication Systems, 22(1–4), 267–280.

    Article  Google Scholar 

  24. Ohta, T., Inoue, S., & Kakuda, Y. (2003). An adaptive multi-hop clustering scheme for highly mobile ad hoc networks. In Proceedings of sixth international symposium on autonomous decentralized systems (ISADS’03), Italy.

    Google Scholar 

  25. Purtoosi, R., Taheri, H., Mohammadi, A., & Foroozan, F. (2004). A light-weight contention-based clustering algorithm for wireless ad hoc networks. In Computer and information technology (CIT ’04) (pp. 627–632).

    Google Scholar 

  26. Ruegg, A. (1989). Processus stochastiques. Lausanne: Presses Polytechniques Romandes.

    Google Scholar 

  27. Sanchez, M., & Manzoni, P. (2001). Anejos: a Java based simulator for ad-hoc networks. Future Generations Computer Systems, 17(5), 573–583.

    Article  Google Scholar 

  28. Santi, P. (2005). The critical transmitting range for connectivity in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 4, 310–317.

    Article  Google Scholar 

  29. Shayeb, I. G., Hussein, A. H., & Nassoura, A. B. (2011). A survey of clustering schemes for ad-hoc network (MANET). American Journal of Scientific Research, 20, 135–151.

    Google Scholar 

  30. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2, 483–502. Special issue on mobile and ad hoc networking: research, trends and applications

    Article  Google Scholar 

  31. Troël, A. (2004). Prise en compte de la mobilité dans les interactions de mobilité entre terminaux à profils hétérogènes. PhD thesis, Université de Rennes 1, France.

  32. Wu, J., & Li, H. (1999). A dominating-set-based routing scheme in ad hoc wireless networks. Telecommunication Systems, 3, 63–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karima Adel-Aissanou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adel-Aissanou, K., Aïssani, D., Djellab, N. et al. A stochastic model to study the impact of the transmission frequency of hello messages on the connectivity of ad hoc networks. Telecommun Syst 57, 197–207 (2014). https://doi.org/10.1007/s11235-013-9841-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9841-8

Keywords

Navigation