Skip to main content
Log in

Near ground path gain measurements at 433/868/915/2400 MHz in indoor corridor for wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Near to ground radio frequency (RF) propagation path gain (PG) measurements at short distances at antenna height of 50 cm from the ground/floor were made in typical narrow and wide straight indoor corridors at 433/868/915/2400 MHz in a modern multi-storied building. The measurement was performed utilizing RF equipment and comparisons were made with Matlab simulations of ray tracing technique, free space model and ITU-R model along with Full-3D ray tracing model of Wireless Insite (WI) software. Measured PG values showed good agreement with WI in all cases. Path loss exponent (PE) values ranging from 1.22 to 2.13 were observed from the measured data. The research work reported in this paper is predominately geared towards characterizing radio link for wireless sensor networks in typical indoor corridor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PG:

Path Gain.

RF:

Radio Frequency.

PE:

Path loss Exponent.

WSN:

Wireless Sensor Networks.

Tx:

Transmitter.

Rx:

Receiver.

NSC:

Narrow Straight Corridor.

WSC:

Wide Straight Corridor.

WI:

Wireless Insite.

ITU-R:

International Telecommunication Union-Radio communication sector.

BPSK:

Binary Phase Shift Keying

References

  1. Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks. New Jersey: Wiley.

    Book  Google Scholar 

  2. Alexander, S. E. (1982). Radio propagation within buildings at 900 MHz. IEEE Electron Device Letters, 18(21), 913–914.

    Article  Google Scholar 

  3. Balanis, C. A. (2005). Antenna theory: analysis and design. New Jersey: Wiley.

    Google Scholar 

  4. Bertoni, H. L. (2000). Radio propagation for modern wireless systems. New York: Prentice Hall.

    Google Scholar 

  5. Callaway, E. H. (2004). Wireless sensor networks: architectures and protocols. Boca Raton: Auerbach.

    Google Scholar 

  6. Foran, R. A., Welch, T. B., & Walker, M. J. (1999). Very near ground radio frequency propagation measurements and analysis for military applications. In Proceedings of IEEE military communications conference, MILCOM’1999, November 1999 (Vol. 1, pp. 336–340).

    Google Scholar 

  7. Ganesh, R., & Pahlavan, K. (1992). Statistical characterization of a partitioned indoor radio channel. In Proceedings of IEEE international conference on communications, ICC’1992, June 1992 (Vol. 3, pp. 1252–1256).

    Google Scholar 

  8. Han, G., Xu, H., Duong, T., Jiang, J., & Hara, T. (2011). Localization algorithms of wireless sensor networks: a survey. Telecommunication Systems. doi:10.1007/s11235-011-9564-7.

    Google Scholar 

  9. Irfan, N., Bolic, M., Yagoub, M., & Narasimhan, V. (2010). Neural-based approach for localization of sensors in indoor environment. Telecommunication Systems, 44(1–2), 149–158.

    Article  Google Scholar 

  10. ITU-R, recommendation, P.527-3, electrical characteristics of the surface of the earth, March 1992.

  11. ITU-R, recommendation, P.1238-5, propagation data and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz, February 2007.

  12. Janek, J., & Evans, J. (2010). Predicting ground effects of omnidirectional antennas in wireless sensor networks. Wireless Sensor Network, 2(12), 879–890.

    Article  Google Scholar 

  13. Joshi, G. G., Dietrich, C. B., Anderson, C. R., Newhall, W. G., Davis, W. A., Isaacs, J., & Barnett, G. (2005). Near-ground channel measurements over line-of-sight and forested paths. IEE Proceedings. Microwaves, Antennas and Propagation, 152(6), 589–596.

    Article  Google Scholar 

  14. Kraus, J. D., & Marhefka, R. J. (2006). Antennas for all applications. Columbus: McGraw-Hill.

    Google Scholar 

  15. Ma, D., Er, M., Wang, B., & Lim, H. (2010). Range-free wireless sensor networks localization based on hop-count quantization. Telecommunication Systems. doi:10.1007/s11235-010-9395-y.

    Google Scholar 

  16. Molina-Garcia-Pardo, J. M., Martinez-Sala, A., Bueno-Delgado, M. V., Egea-lopez, E., Juan-Llacer, L., & García-Haro, J. (2005). Channel model at 868 MHz for wireless sensor networks in outdoor scenarios. In Proceedings of international workshop on wireless ad-hoc networks, IWWAN 2005, May 2005.

    Google Scholar 

  17. Moravek, P., Komosny, D., Simek, M., Jelinek, M., Girbau, D., & Lazaro, A. (2011). Investigation of radio channel uncertainty in distance estimation in wireless sensor networks. Telecommunication Systems. doi:10.1007/s11235-011-9522-4.

    Google Scholar 

  18. Neskovic, A., Neskovic, N., & Paunovic, G. (2000). Modern approaches in modeling of mobile radio systems propagation environment. IEEE Communications Surveys and Tutorials, 3(3), 2–12.

    Article  Google Scholar 

  19. Qaraqe, K. A., Yarkan, S., Guzelgoz, S., & Arslan, H. (2011). Statistical wireless channel propagation characteristics in underground mines at 900 MHz: a comparative analysis with indoor channels. Ad Hoc Networks. doi:10.1016/j.adhoc.2011.01.015.

    Google Scholar 

  20. Rappaport, T. S. (2002). Wireless communications: principles and practice. New York: Prentice Hall.

    Google Scholar 

  21. Remcom wireless InSite. Available from: http://www.remcom.com/wireless-insite.

  22. Seybold, J. S. (2005). Introduction to RF propagation. New Jersey: Wiley.

    Book  Google Scholar 

  23. Sohrabi, K., Manriquez, B., & Pottie, G. J. (1999). Near ground wideband channel measurements in 800–1000 MHz. In Proceedings of IEEE 49th vehicular technology conference, VTC’1999, May 1999 (Vol. 1, pp. 571–574).

    Google Scholar 

  24. Stoyanova, T., Kerasiotis, F., Prayati, A., & Papadopoulos, G. (2009). Evaluation of impact factors on RSS accuracy for localization and tracking applications in sensor networks. Telecommunication Systems, 42(3–4), 235–248.

    Article  Google Scholar 

  25. Tranter, W. H., Woerner, B. D., Rappaport, T. S., & Reed, J. H. (2002). Wireless personal communications: channel modeling and systems engineering. Massachusetts: Kluwer Academic.

    Book  Google Scholar 

  26. Welch, T. B., Wood, J. R., McParlin, R. W., Schulze, L. K., Flaherty, T. P., Carlone Hanson, S. G., Cahill, R. J., & Foran, R. A. (2000). Very near ground RF propagation measurements for wireless systems. In Proceedings of IEEE 51st vehicular technology conference, VTC’2000, May 2000 (Vol. 3, pp. 2556–2558).

    Google Scholar 

  27. Zheng, J., & Jamalipour, A. (2009). Wireless sensor networks: a networking perspective. New Jersey: Wiley.

    Book  Google Scholar 

Download references

Acknowledgements

Authors are very much grateful to the Department of Science & Technology (DST), Government of India for providing financial assistance in executing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rama Rao.

Additional information

This work is extended version of the research paper presented at International Conference on Communication Technology and System Design—ICCTSD 2011 at Amrita University, Coimbatore, Tamilnadu, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rama Rao, T., Balachander, D., Nishesh, T. et al. Near ground path gain measurements at 433/868/915/2400 MHz in indoor corridor for wireless sensor networks. Telecommun Syst 56, 347–355 (2014). https://doi.org/10.1007/s11235-013-9848-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9848-1

Keywords

Navigation