Skip to main content
Log in

Modern analog and digital communication systems development using GNU Radio with USRP

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this modern world many communication devices are highly intelligent and interconnected between each other. Any up-gradation of the hardware in the existing communication devices is not easier one. Compatibility of the new hardware with existing hardware is highly essential. But the new protocols may or may not support the older one. The solution for these problems can be provided by using the reconfigurable hardware design. The hardware can be reprogrammed according to the new change in technology up-gradation. The cost of commercially available hardware and software requirements for setting up such a module is very high. This can be solved by using Open source hardware and software such as Universal Software Radio Peripheral (USRP) and GNU Radio. This work demonstrates how the modern analog communication system like Community Radio Schemes and Radio Data System (RDS) and digital communication systems such as Simple Digital Video Broadcasting (DVB) and OFDM based data communication can be developed using the Open source hardware USRP1. This work will be helpful even for first year level of engineering students to easily implement any communication and control applications with cheaper cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Aravind, H., Gandhiraj, R., Soman, K. P., Sabarimalai Manikandan, M., & Rakesh, P. (2011). Spectrum sensing implementations for software defined radio in simulink. In International conference on communication technology and system design 2011, Elsevier-Procedia engineering, Dec. 7–9.

    Google Scholar 

  2. Abinav, A. k., Naveena, K., Pratibha, R., Gandhiraj, R., & Soman, K. P. (2010). SVM based classification of digitally modulated signals for software defined radio. In International conference on embedded systems 2010, July 13–15. Coimbatore: Coimbatore Institute of Technology.

    Google Scholar 

  3. Abinav, A. k., Naveena, K., Pratibha, R., Gandhiraj, R., & Soman, K. P. (2010). Detection and classification of signals to configure software defined radio. In Second national conference on recent trends in communication, computation and signal processing, March 26–27.

    Google Scholar 

  4. Al-kamali, F. S., Dessouky, M. I., Sallam, B. M., Shawki, F., & Abd El-Samie, F. E. (2011). Impact of the power amplifier on the performance of the single carrier frequency division multiple access system. Journal of Telecommunication Systems. doi:10.1007/s11235-011-9439-y.

  5. Blossom, E. How to write a signal processing block. http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html.

  6. Shen, D. (2005). http://www.snowymtn.ca/GNURadio/GNURAdioDoc-5.pdf.

  7. Fuxjäger, P., Costantini, A., Valerio, D., Castiglione, P., Zacheo, G., Zemen, T., & Ricciato, F. IEEE 802.11p Transmission using GNURadio. http://userver.ftw.at/~valerio/files/wsr10.pdf.

  8. Leipold, F., Tassetto, D., & Bovelli, S. (2011). Wireless in-cabin communication for aircraft infrastructure. Journal of Telecommunication Systems. doi:10.1007/s11235-011-9636-8.

  9. GNU radio introduction. http://gnuradio.org/redmine/projects/gnuradio/wiki/WhatIsGR.

  10. GNU radio companion. http://www.gnuradio.org/trac/wiki/GNURadioCompanion.

  11. Garrido-Cantos, R., De Cock, J., Martínez, J. L., Van Leuven, S., & Garrido, A. (2011). Video transcoding for mobile digital television. Journal of Telecommunication Systems. doi:10.1007/s11235-011-9594-1.

  12. Image reference. http://www.microwavejournal.com/legacy_assets/FigureImg/4324_Fig3_L.jpg.

  13. Proakis, J. G., & Salehi, M. (2007). Fundamentals of communication systems. Pearson Prentice Hall, India.

    Google Scholar 

  14. Chung, J., Yun, Y., & Choi, S. (2011). Experiments on MIMO-OFDM system combined with adaptive beam forming based on IEEE 802.16e WMAN standard. Journal of Telecommunication Systems. doi:10.1007/s11235-011-9475-7.

  15. Dillinger, M., Madani, K., & Alonistioti, N. (2005). Software-defined radio basics. Review of Software Defined Radio: Architectures, 6(10).

  16. Ettus, M. USRP user’s and developer’s guide. Ettus Research LLC.

  17. Dickens, M., Laneman, N.J., & Dunn, B. P. (2012). Seamless dynamic runtime reconfiguration in a software-defined radio. Journal of Signal Processing Systems (Springer), 69(1), 87–94.

    Article  Google Scholar 

  18. RDS fundamentals. http://www.radio-electronics.com/info/broadcast/rds/radio-data-system-technology-operation.php.

  19. Ranjini, R., Gandhiraj, R., & Soman, K. P. (2011). Analog and digital modulation toolkit for software defined radio. In International conference on communication technology and system design 2011, Elsevier-Procedia engineering, Dec 7–9.

    Google Scholar 

  20. Simple DVB Experimental Setup. http://wiki.oz9aec.net/index.php/Simple_DVB_with_Gstreamer_and_GNU_Radio.

  21. Prasad, S. S., Gandhiraj, R., & Soman, K. P. (2011). Multi-user spectrum sensing based on multitaper method for cognitive environments, In International Journal of Computer Applications (IJCA). New York: Foundation of Computer Science. doi:10.5120/2613-1093.

    Google Scholar 

  22. Prasad, S. S., Gandhiraj, R., & Soman, K. P. (2010). Efficient spectral estimation with Slepian tapers in cognitive environment: a review. In Second national conference on recent trends in communication, computation and signal processing, March 26–27.

    Google Scholar 

  23. Prasad, S. S., Gandhiraj, R., & Soman, K. P. (2010). Cognitive radio as a background for spectrum sensing—a review. In National conference on recent innovation in technology 2010 (NCRIT 2010), Kottayam, Kerala, March 04–06. Organized by Rajiv Gandhi Institute of Technology (Govt. Engineering College).

    Google Scholar 

  24. Li, Y., & Stuber, G. L. (2006). Orthogonal frequency division multiplexing for wireless communication. Berlin: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This work is a part of Ministry of Human Resources and Development (MHRD), Government of India, funded research project. We wish to thank Mr. Rakesh Peter and Mr. Senthil Murugan for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gandhiraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhiraj, R., Soman, K.P. Modern analog and digital communication systems development using GNU Radio with USRP. Telecommun Syst 56, 367–381 (2014). https://doi.org/10.1007/s11235-013-9850-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9850-7

Keywords

Navigation