Skip to main content

Advertisement

Log in

Mobile sink and power management for efficient data dissemination in wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Data dissemination in wireless sensor networks is the main goal and the final waited objective of the sensor network deployment. In such environment which consists of a large number of low cost devices, sensor nodes generate sensed data of stimulus and forward them to sinks via wireless multi-hops communication. In typical wireless sensor network, the sensor nodes are equipped with irreplaceable batteries and characterized by limited computing capability. Therefore, minimizing the energy consumption of the sensor nodes and thus maximizing the lifetime of sensor networks is one of the most important research issues. In this paper, we present new data dissemination protocol based energy-efficient called energy-based data dissemination protocol. In this protocol, we propose new energy management scheme using a dynamic power threshold and we introduce also new sink mobility scheme to balance the network load between sensor nodes and thus improve the performances. Firstly, in the initialization phase, the sensor nodes organized under clusters and cluster head should be selected for each cluster. Secondly, in the data dissemination phase, the cluster head collects and transmits the sensed data based on the data dissemination process. In this phase, sensor sink may move toward any cluster based on its sensed data frequency to minimize energy consumption of sensor nodes near the fixed sinks due to relaying of large amount of data. The simulation result shows that the proposal protocol permits to reduce the energy consumption and prolong the network life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akyildiz, I., Su, W., Sankarasubramanian, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  2. Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999), Next century challenges: Scalable coordination in sensor networks. Proceedings of the fifth annual international conference on mobile computing and networks (MobiCOM’99), Seattle, Washington.

  3. Guerroumi, M., Badache, N., & Moussaoui, S. (2011). Data dissemination and power management in wireless sensor networks. Advances in computing and communications, communications in computer and information science, vol 193. Part, 6, 593–607.

  4. Natalizio, E., & Loscrí, V. (2011). Controlled mobility in mobile sensor networks: advantages, issues and challenges, Telecommunication Systems. Special issue on Recent Advance in Mobile Sensor Network. doi:10.1007/s11235-011-9561-x.

  5. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-effcient communication protocol for wireless microsensor networks. Proceedings of the 33rd Hawaii International Conference on System Sciences (HICSS’00).

  6. Manjeshwar, D. P., & Agrawal, A. (2001). TEEN: a routing protocol for enhanced efficiency in wireless sensor networks, International proceedings of 15th parallel and distributed processing symposium, pp. 2009–2015.

  7. Lindsey, S., & Raghavendra, C.S. (2002). Pegasis: Power-efficient gathering in sensor information systems. Proceedings of the IEEE, pp. 924–935.

  8. Xuan, H.L., & Lee, S. (2004). A coordination-based data dissemination protocol for wireless sensor networks, Proceedings of the sensor networks and information processing conference, pp. 13–18.

  9. Akkaya, K., & Younis, M. (2003). An energy-aware QoS routing protocol for wireless sensor networks. Proceedings of the IEEE Workshop on Mobile and Wireless Networks (MWN2003), Providence, Rhode Island, May.

  10. Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography informed energy conservation for ad hoc routing, Rome, Italy.

  11. Heinzelman, W. R., Kulik, J., & Balakrishnan, H. (1999). Adaptive protocols for information dissemination in wireless sensor networks. Proceedings of the ACM MobiCom’99, Seattle, Washington, pp. 174–185.

  12. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking, 11(1), 2–16.

    Article  Google Scholar 

  13. Lee, M. G. & Lee, S. (2007). Data dissemination for wireless sensor networks. Proceedings of the 10th IEEE international symposium on object and component-oriented real-time distributed computing, pp. 172–180.

  14. Kim, S., Son, S. H., Stankovic, J. A., & Choi, Y. (2004). Data dissemination over wireless sensor networks. IEEE Communications Letters, 8(9), 561–563.

    Article  Google Scholar 

  15. Felemban, E., Lee, C. G., & Ekici, E. (2006). MMSPEED: Multipath multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(6), 738–754.

    Article  Google Scholar 

  16. Munaretto, D., An, C., Widmer, J., & Timm-Giel, A. (2011). Resilient data gathering and communication algorithms for emergency scenarios. Telecommunication Systems, 48, 317–327. doi:10.1007/s11235-010-9346-7.

    Article  Google Scholar 

  17. Kwon, S., Shin, J., Ko, J., & Kim, C. (2010). Distributed and localized construction of routing structure for sensor data gathering. Telecommunication Systems, 44, 135–147. doi:10.1007/s11235-009-9218-1.

    Article  Google Scholar 

  18. Luo, H., Ye, F., Cheng, J., Lu, S., & Zhang, L. (2002). Proceedings of a two tier data dissemination model for large scale wireless sensor networks. ACM MOBICOM.

  19. Luo, J., Panchard, J., Piorkowski, M., Grossglauser, M., & Hubaux, J. (2006) Proceeding IEEE/ACM DCOSS MobiRoute: Routing toward a mobile sink for improving lifetime in sensor networks.

  20. Gandham, S., Dawande, M., Prakash, R., & Venkatesan, S. (2003). Energy efficient schemes for wireless sensor networks with multiple mobile base stations. Proceedings IEEE GLOBECOM.

  21. Kansal, A., Somasundara, A., Jea, D., Srivastava, M., & Estrin, D. (2004). Intelligent fluid infrastructure for embedded networks, Proceedings ACM MobiSys.

  22. Lee, E., Park, S., Yu, F., & Kim, S. (2009) Exploiting mobility for efficient data dissemination in wireless sensor networks, Journal of communications and networks, 11(4)

  23. Vecchio, M., Viana, A., Ziviani, A., & Friedman, R. (2010). DEEP: Density-based proactive data dissemination protocol for wireless sensor networks with uncontrolled sink mobility. Computer Communications, 33(8), 929–939.

    Article  Google Scholar 

  24. Drabkin, V., Friedman, R., Kliot, G., & Segal, M. (2007). RAPID: reliable probabilistic dissemination in wireless ad hoc networks. Proceedings of the 26th IEEE international symposium on reliable distributed systems (SRDS), pp. 13–22.

  25. Kinalis, A., Nikoletseas, S., Patroumpa, D., & Rolim, J. (2009). Biased sink mobility with adaptive stop times for low latency data collection in sensor networks, GLOBECOM’09, pp. 1–6.

  26. Kinalis, A., Nikoletseas, S., Patroumpa, D., & Rolim, J. (2012). Biased sink mobility with adaptive stop times for low latency data collection in sensor networks. Information fusion. Berlin: Elsevier.

    Google Scholar 

  27. Mir, Z. H., & Ko, Y. B. (2007). A quadtree-based hierarchical data dissemination. Telecommunication System, 36, 117–128. doi:10.1007/s11235-007-9062-0.

    Article  Google Scholar 

  28. Bulusu, N., Heidemann, J., & Estrin, D. (2000). Gps-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine, 7(5), 28–34.

    Article  Google Scholar 

  29. Albowitz, J., Chen, A., & Shang, L. (2001). Recursive position estimation in sensor networks, ICNP’01.

  30. Perrig, A., Szewczyk, R., Tygar, J. D., Wen, V., & Culler, D. E. (2002). SPINS: Security protocols for sensor networks. Wireless Networks, 8(5), 521–534.

    Article  Google Scholar 

  31. Karlof, C. Sastry, N., & Wagner, D. (2004). TinySec: A link layer security architecture for wireless sensor networks, Proceedings of the 2nd international conference on embedded networked sensor systems (SenSys’04), pp. 162–175.

  32. Chan, H., Perrig, A., & Song, D. X. (2003). Random key predistribution schemes for sensor networks, IEEE symposium on security and privacy.

  33. Eschenauer, L., & Gligor, V. (2002). A key-management scheme for distributed sensor networks. ACM conference on computer and communications security, pp. 41–47, March.

  34. Znaidi, W., & Minier, M. (2012). Key establishment and management for WSNs. Telecommunication Systems, 50, 113–125. doi:10.1007/s11235-010-9391-2.

    Article  Google Scholar 

  35. Bagrodia, R., Zeng, X., & Gerla, M. (1999). GloMoSim: a library for parallel simulation of large-scale wireless networks, Computer Science Department, University of California at Los Angles.

  36. Bulusu, N., Heidemann, J., Estrin, D., & Tran, T. (2004). Self-configuration localization systems: design and experimental evaluation. ACM Transactions, 3(1), 24–60.

    Google Scholar 

  37. Montgomery, D. C. (1996). Introduction to statistical quality control (3rd ed.). New York: Wiley.

    Google Scholar 

  38. Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality Technology, 18, 203–210.

    Google Scholar 

  39. Crowder, S. V. (1987). A simple method for studying run-length distributions of exponentially weighted moving average charts. Technometrics, 29, 401–408.

    Google Scholar 

  40. Crowder, S. V. (1987). Average run lengths of exponentially weighted moving average charts. Journal of Quality Technology, 19, 16–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guerroumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerroumi, M., Badache, N. & Moussaoui, S. Mobile sink and power management for efficient data dissemination in wireless sensor networks. Telecommun Syst 58, 279–292 (2015). https://doi.org/10.1007/s11235-014-9877-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9877-4

Keywords

Navigation