Abstract
The 3GPP architecture is not particularly IPv6 friendly when it comes to handling of multiple prefixes. The excess use of default bearers and related radio access bearers to mimic multi-addressing is not efficient, resource-wise. This paper proposes to enhance the existing Evolved Packet System bearer model to allow a bearer to have multiple IPv6 prefixes as well as multiple next-hop routers for the sake of a better network controlled traffic steering. The solution has a minimal delta to the existing 3GPP system architecture and offers excellent migration path to the new functionality. While the proposed solution advocates local traffic breakouts and use of localized network resources along with multi-addressing, it does not even attempt to change the Packet Data Network Gateway centric mobility management nature of the 3GPP architecture. The enhancements on the bearer model are based on the design principle that IPv6 prefixes meant for localized network access do not need mobility, thus reducing the amount of system level signaling during mobility events. The solution works only for IPv6, while the existing IPv4 functionality is kept intact. This paper describes in detail the new bearer model, including an extensive discussion of how IPv6 is supposed to be implemented on top of it, and analyzes the impact of required changes and the backward compatibility with the existing Evolved Packet System.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
3GPP. (2010). Evolved universal terrestrial radio access (E-UTRA), Packet data convergence protocol (PDCP) specification. TS 36.323, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/36323.htm. Accessed 12 Feb 2015.
3GPP. (2010). General packet radio system (GPRS) tunnelling protocol user plane (GTPv1-U). TS 29.281, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/29281.htm. Accessed 12 Feb 2015.
3GPP. (2011). Evolved universal terrestrial radio access network (E-UTRAN), S1 application protocol (S1AP). TS 36.413, 3rd generation partnership project (3GPP) (2011). http://www.3gpp.org/ftp/Specs/html-info/36413.htm. Accessed 12 Feb 2015.
3GPP. (2011). Evolved universal terrestrial radio access network (E-UTRAN), X2 general aspects and principles. TS 36.420, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/36420.htm. Accessed 12 Feb 2015.
3GPP. (2011). Interworking between the public land mobile network (PLMN) supporting packet based services and packet data networks (pdn). ts 29.061, 3rd generation partnership project (3gpp). http://www.3gpp.org/ftp/specs/html-info/29061.htm. Accessed 12 Feb 2015.
3GPP. (2012). 3GPP evolved packet system (EPS); Evolved general packet radio service (GPRS) tunnelling protocol for control plane (GTPv2-C); Stage 3. TS 29.274, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/29274.htm. Accessed 12 Feb 2015.
3GPP. (2012). Architecture enhancements for non-3GPP accesses. TS 23.402, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/23402.htm. Accessed 12 Feb 2015.
3GPP. (2012). Evolved packet system (EPS); Mobility management entity (MME) and serving GPRS support node (SGSN) related interfaces based on Diameter protocol. TS 29.272, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/29272.htm. Accessed 12 Feb 2015.
3GPP. (2012). General packet radio service (GPRS) enhancements for evolved universal terrestrial radio access network (E-UTRAN) access. TS 23.401, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/23401.htm. Accessed 12 Feb 2015.
3GPP. (2012). Non-access-stratum (NAS) protocol for evolved packet system (EPS); stage 3. TS 24.301, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/24301.htm. Accessed 12 Feb 2015.
3GPP. (2012). Policy and charging control architecture. TS 23.203, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/23203.htm. Accessed 12 Feb 2015.
3GPP. (2012). Proxy mobile IPv6 (PMIPv6) based mobility and tunnelling protocols, Stage 3. TS 29.275, 3rd generation partnership project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/29275.htm. Accessed 12 Feb 2015.
Andersson, K., & Öhlund, C. (2011). Optimized access network selection in a combined WLAN/LTE environment. Wireless Personal Communications, 61, 739–751.
Atkinson, R., Bhatti, S., & Hailes, S. (2009). ILNP: Mobility, multi-homing, localised addressing and security through naming. Telecommunication Systems, 42(3–4), 273–291. doi:10.1007/s11235-009-9186-5.
Atkinson, R., Haskin, D., & Luciani, J. (1996). IPv6 over NBMA Networks. Internet-draft draft-IETF-ion-IPv6-NBMA-00. Internet Engineering Task Force. http://tools.ietf.org/id/draft-ietf-ion-ipv6-nbma-00.txt. Work in progress. Accessed 12 Feb 2015.
Blanchet, M., & Seite, P. (2011). Multiple interfaces and provisioning domains problem statement. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc6418.txt. Accessed 12 Feb 2015.
Bokor, L., Faigl, Z., & Imre, S. (2011). Flat architectures: towards scalable future internet mobility. In J. Domingue, A. Galis, A. Gavras, T. Zahariadis, D. Lambert, F. Cleary, P. Daras, S. Krco, H. Möller, M. S. Li, H. Schaffers, V. Lotz, F. Alvarez, B. Stiller, S. Karnouskos, S. Avessta, & M. Nilsson (Eds.), The future internet. Lecture Notes in Computer Science (vol. 6656, pp. 35–50). Berlin: Springer.
Bormann, C., Burmeister, C., Degermark, M., Fukushima, H., Hannu, H., Jonsson, L. E., Hakenberg, R., Koren, T., Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke, T., Yoshimura, T., & Zheng, H. (2001). RObust header compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc3095.txt. Accessed 12 Feb 2015.
Choi, J., & Daley, G. (2005). Goals of detecting network attachment in IPv6. Internet Engineering Task Force (2005). http://www.rfc-editor.org/rfc/rfc4135.txt. Accessed 12 Feb 2015.
Chuang, Y. J., & Lin, K. J. (2012). Cellular traffic offloading through community-based opportunistic dissemination. In: Proceedings of the Wireless Communications and Networking Conference (WCNC), 2012, (pp. 3188–3193). IEEE. doi:10.1109/WCNC.2012.6214356.
de Dios, O., Chico, F., Palacios, J., Guerra, S., & Rodriguez, M. (2011). CAPEX savings by a scalable IP offloading approach. In: Proceedings of the Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, (pp. 1–3).
Draves, R., & Thaler, D. (2005). Default router preferences and more-specific routes. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc4191.txt. Accessed 12 Feb 2015.
Droms, R. (2004). Stateless dynamic host configuration protocol (DHCP) service for IPv6. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc3736.txt. Accessed 12 Feb 2015.
Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., & Carney, M. (2003). Dynamic host configuration protocol for IPv6 (DHCPv6). Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc3315.txt. Accessed 12 Feb 2015.
Ferragut, J., Mangues-Bafalluy, J., Nez-Martnez, J., & Zdarsky, F. (2012). Traffic and mobility management in networks of femtocells. Mobile Networks and Applications, 17, 662–673.
Frias, Z., & Prez, J. (2012). Techno-economic analysis of femtocell deployment in long-term evolution networks. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–15.
Hadjiantonis, A., & Ellinas, G. (2012). Converged network and device management for data offloading. In: Proceedings of the Network Operations and Management Symposium (NOMS), 2012, (pp. 490–493). IEEE.
Han, B., Hui, P., Kumar, V. A., Marathe, M. V., Pei, G., & Srinivasan, A. (2010). Cellular traffic offloading through opportunistic communications: a case study. In: Proceedings of the 5th ACM workshop on Challenged networks, CHANTS ’10, (pp. 31–38). New York, NY: ACM.
Han, B., Hui, P., Kumar, V., Marathe, M., Shao, J., & Srinivasan, A. (2012). Mobile data offloading through opportunistic communications and social participation. IEEE Transactions on Mobile Computing, 11(5), 821–834.
Hinden, R., & Thaler, D. (2005). IPv6 host-to-router load sharing. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc4311.txt. Accessed 12 Feb 2015.
Korhonen, J., Patil, B., Gundavelli, S., Seite, P., & Liu, D. (2012). IPv6 prefix mobility management properties. internet-draft draft-korhonen-dmm-prefix-properties-02. Internet Engineering Task Force. http://tools.ietf.org/id/draft-korhonen-dmm-prefix-properties-02.txt. Work in progress. Accessed 12 Feb 2015.
Korhonen, J., Savolainen, T., Krishnan, S., & Troan, O. (2012). Prefix exclude option for DHCPv6-based prefix delegation. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc6603.txt. Accessed 12 Feb 2015.
Korhonen, J., Soininen, J., Patil, B., Savolainen, T., Bajko, G., & Iisakkila, K. (2012). IPv6 in 3rd generation partnership project (3GPP) evolved packet system (EPS). Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc6459.txt. Accessed 12 Feb 2015.
Krishnan, S., & Daley, G. (2010). Simple procedures for detecting network attachment in IPv6. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc6059.txt. Accessed 12 Feb 2015.
Le, K. (2011). Major trends in cellular networks and corresponding optimization issues. In J. Kennington, E. Olinick, & D. Rajan (Eds.), Wireless Network Design, International Series in Operations Research and Management Science (vol. 158, pp. 353–373). New York: Springer.
Li, C. S., Lin, F., & Chao, H. C. (2009). Routing optimization over network mobility with distributed home agents as the cross layer consideration. Telecommunication Systems, 42(1–2), 63–76. doi:10.1007/s11235-009-9169-6.
Ma, L., & Li, W. (2011). Traffic offload mechanism in EPC based on bearer type. In: Proceedings of the 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 2011, pp. 1–4.
Mrugalski, T., & Wozniak, J. (2010). Analysis of IPv6 handovers in IEEE 802.16 environment. Telecommunication Systems, 45(2–3), 191–204. doi:10.1007/s11235-009-9244-z.
Mrugalski, T., Wozniak, J., & Nowicki, K. (2011). Dynamic host configuration protocol for IPv6 improvements for mobile nodes. Telecommunication Systems, 1–11 (2011). doi:10.1007/s11235-011-9609-y.
Narten, T., Nordmark, E., Simpson, W., & Soliman, H. (2007). Neighbor discovery for IP version 6 (IPv6). Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc4861.txt. Accessed 12 Feb 2015.
Reichl, W., Reichl, P., & Reichel, P. (2012). Out of the wireless access bottleneck trap: Technologies, economics, regulation and standardization perspectives. Elektrotechnik und Informationstechnik, 129, 400–406.
Roh, J., Ji, Y., Lee, Y. G., & Ahn, T. (2011). Femtocell traffic offload scheme for core networks. In: Proceedings of the 4th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 2011, (pp. 1–5).
Samdanis, K., Taleb, T., & Schmid, S. (2012). Traffic offload enhancements for eUTRAN. Communications Surveys Tutorials, IEEE, 14(3), 884–896.
Sankaran, C. (2012). Data offloading techniques in 3GPP Rel-10 networks: A tutorial. Communications Magazine, IEEE, 50(6), 46–53.
Savolainen, T., Kato, J., & Lemon, T. (2012). Improved recursive dns server selection for multi-interfaced nodes. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc731.txt. Accessed 12 Feb 2015.
Taleb, T., Hadjadj-Aoul, Y., & Schmid, S. (2011). Geographical location and load based gateway selection for optimal traffic offload in mobile networks. In J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, & C. Scoglio (Eds.), NETWORKING 2011, Lecture Notes in Computer Science (vol. 6640, pp. 331–342). Berlin: Springer.
Templin, F., Gleeson, T., & Thaler, D. (2008). Intra-site automatic tunnel addressing protocol (ISATAP). Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc5214.txt. Accessed 12 Feb 2015.
Thaler, D., Draves, R., Matsumoto, A., & Chown, T. (2012). Default address selection for internet protocol version 6 (IPv6). Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc6724.txt. Accessed 12 Feb 2015.
Thomson, S., Narten, T., & Jinmei, T. (2007). IPv6 stateless address autoconfiguration. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc4862.txt. Accessed 12 Feb 2015.
Tomici, J., & Chitrapu, P. (2011). Multi-RAT traffic offloading solutions for the bandwidth crunch problem. In: Proceedings of the Systems, Applications and Technology Conference (LISAT), 2011 IEEE Long Island, (pp. 1–6). IEEE
Troan, O., & Droms, R. (2003). IPv6 prefix options for dynamic host configuration protocol (DHCP) version 6. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc3633.txt. Accessed 12 Feb 2015.
Vida, R., & Costa, L. (2004). Multicast listener discovery version 2 (MLDv2) for IPv6. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc3810.txt. Accessed 12 Feb 2015.
Wasserman, M., & Baker, F. (2011). IPv6-to-IPv6 network prefix translation. Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc6296.txt. Accessed 12 Feb 2015.
Yen, Y. S., Chen, L. Y., Chi, T. Y., & Chao, H. C. (2011). A novel predictive scheduling handover on mobile ipv6. Telecommunication Systems, 1–13. doi:10.1007/s11235-011-9448-x.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Korhonen, J., Savolainen, T., Wolfner, G. et al. Evolving the 3GPP bearer model towards multiple IPv6 prefixes and next-hop routers. Telecommun Syst 59, 193–209 (2015). https://doi.org/10.1007/s11235-014-9956-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-014-9956-6