Skip to main content

Advertisement

Log in

Optimized Radio-over-Fiber-based cellular backhauling strategy using genetic algorithms and Pareto fronts

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Radio-over-Fiber (RoF)-based cellular backhauling consitutes a promising solution to realize a cost-effective evolution of radio access networks towards higher radio-cells densification. In this paper, we recall the main characteristics of an innovative cellular backhauling all-optical network architecture called Generic Radio-over-Fiber Access Network (GeRoFAN) aiming to federate 4G system radio cells. However, the transport of multiple radio channels over an analog RoF link is subject to optical crosstalk and intermodulation distortions causing a decrease of the wireless system capacity. Supported by an analytical modeling of the relevant optical transmission limitations, we propose an impairment-aware radio cellular backhauling strategy for GeRoFAN able to maximize the radio cellular capacity while achieving an efficient use of optical resources. This optimization problem is solved through Pareto-based Genetic Optimization (PaGeO), a multi-objective meta-heuristic based on evolutionary algorithms and exploiting the concept of Pareto front. Numerical results indicate that PaGeO, applied to LTE cellular system, outperforms alternative backhauling strategies by achieving an excellent compromise between preserving the radio capacity of the system and the number of required optical channels. We also highlight how the optimal backhauling strategy calculated using PaGeO enables GeRoFAN to take full benefit from overlaying several radio channels per cell site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aleksić, S. (2013). Optically transparent integrated metro-access network. Telecommunication Systems, 52(3), 1505–1515.

    Article  Google Scholar 

  2. Yang, Y. (2010). Multichannel digitized rf-over-fiber transmission based on bandpass sampling and FPGA. IEEE Transactions on Microwave Theory and Techniques, 58(11), 3181– 3188.

    Article  Google Scholar 

  3. Al-Raweshidy, H., & Komaki, S. (2002). Radio-over-fiber technologies for mobile communications networks. Norwood: Artech House Inc.

    Google Scholar 

  4. Attard, J. C., & Mitchell, J. E. (2006). Optical network architectures for dynamic reconfiguration of full duplex, multi-wavelength, radio-over-fiber. OSA Journal of Optical Networking, 5(6), 435–444.

    Article  Google Scholar 

  5. Lin, W.-P. (2005). A robust fiber-radio architecture for wavelength-division-multiplexing ring-access networks. IEEE Journal of Lightwave Technology, 23(9), 2610–2620.

    Article  Google Scholar 

  6. Wake, D., Nhansah, A., & Gomes, N. J. (2010). Radio-over-fiber link design for next generation wireless systems. IEEE/JLT, 28(16), 2456–2464.

    Google Scholar 

  7. Haddad, A., Gagnaire, M., & Doumith, E. A. (2011). Impairment-aware control plane for next generation radio-over-fiber access networks. In Proceedings of IEEE/IFIP 2nd International Conference Network of the Future (pp. 92–96).

  8. Haddad, A., Doumith, E. A., & Gagnaire, M. (2012). Impairment-aware radio-over-fiber control plane for LTE antenna backhauling. In International Conference on Communications (IEEE/ICC 2012), Ottawa.

  9. Li, G. L., Sun, C. K., Pappert, S. A., Chen, W. X., & Yu, P. K. L. (1999). Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis. IEEE/ Transactions on Microwave Theory and Techniques, 47(7), 1177–1183.

    Article  Google Scholar 

  10. Lee, G.-W., & Han, S.-K. (1999). Linear-dual electro-absorption modulator for analog optical transmission. Microwave and Optical Technology Letters, 22, 369–373.

    Article  Google Scholar 

  11. Niiho, et al. (2006). Transmission performance of multichannel wireless LAN system based on radio-over-fiber techniques. IEEE/Transactions on Microwave Theory and Techniques, 54(2), 980–989.

    Article  Google Scholar 

  12. Tonguz, O. K., & Jung, H. (1996). Personal communications access networks using subcarrier multiplexed optical links. IEEE/JLT, 14(6), 1400–1409.

    Google Scholar 

  13. Desem, C. (1990). Optical interference in subcarrier multiplexed systems with multiple optical carriers. IEEE/Journal on Selected Areas in Communications, 8(7), 1290–1295.

    Article  Google Scholar 

  14. Wan, P., & Conradi, J. (1996). Impact of double rayleigh backscatter noise on digital and analog fiber systems. IEEE/Journal of Lightwave Technology, 14(3), 288–297.

    Article  Google Scholar 

  15. Hui, R., et al. (2002). Subcarrier multiplexing for high speed optical transmission. IEEE/Journal of Lightwave Technology, 20(3), 417–427.

    Article  Google Scholar 

  16. Sui, C., et al. (2010). Impact of electro-absorption modulator integrated laser on MB-OFDM ultra-wideband signals over fiber systems. IEEE/Journal of Lightwave Technology, 28(24), 3548–3555.

  17. Dods, S. D., & Tucker, R. S. (2001). A comparison of the homodyne crosstalk characteristics of optical add-drop multiplexers. IEEE/Journal of Lightwave Technology, 19(12), 1829–1838.

    Article  Google Scholar 

  18. Narayankhedkar, S. K., & Shevgaonkar, R. K. (1999). Nonuniform fiber gratings in optical networks. In Proceedings of the Pacific Rim Conference on Lasers and Electro-Optics (pp. 499–500).

  19. Talbi, E.-G. (2009). Metaheuristics: From design to implementation. New York: Wiley.

    Book  Google Scholar 

  20. Parthombutr, P., Stach, J., & Park, E. (2005). An algorithm for traffic grooming in wdm optical mesh networks with multiple objectives. Telecommunication Systems, 28(3–4), 369–386.

    Article  Google Scholar 

  21. Grosan, C., Abraham, A., & Hassainen, A. (2009). Designing resilient networks using multicriteria metaheuristics. Telecommunication Systems, 40(1–2), 75–88.

    Article  Google Scholar 

  22. Man, K. F., Tang, K. S., & Kwong, S. (2000). Genetic algorithms: Concepts and designs. Hong Kong: Springer.

    Google Scholar 

  23. Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithm for multiobjective optimization: Formulation, discussion and generalization. In Proceedings of the fifth IEE Colloquium on Genetic Algorithms for Control Systems Engineering.

  24. Babcock, W. (1953). Intermodulation interference in radio systems. Bell Systems Technical Journal, 1, 63–73.

    Article  Google Scholar 

  25. Godlewski, M. et al. (2008). Analytical evaluation of various frequency reuse schemes in cellular OFDMA networks. In Proceedings of the 3rd International Conference on Performance Evaluation Methodologies and Tools, (pp. 32:1–32:10).

  26. Kelif, J. M., & Altman, E. (2010). Impact of macrodiversity on capacity and coverage of cellular network. Telecommunication Systems, 43(1–2), 133–143.

    Article  Google Scholar 

  27. Sesia, S., Toufik, I., & Baker, M. (2009). LTE: The UMTS long-term evolution from theory to practice. New York: Wiley.

    Book  Google Scholar 

  28. Struzak, R. (2001). On spectrum congestion and capacity of radio links. Annals of Operations Research, 107, 339–347.

    Article  Google Scholar 

  29. Rumney, M. (2009). LTE and the evolution to 4G wireless: Design and measurement challenges. Santa Clara: Agilent Technologies.

    Google Scholar 

  30. Chen, et al. (2011). A novel high-isolation rf-soi switch for 2.4 GHz multi-standard applications. Analog Integrated Circuits and Signal Processing, 67(1–2), 143–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Haddad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, A., Gagnaire, M. Optimized Radio-over-Fiber-based cellular backhauling strategy using genetic algorithms and Pareto fronts. Telecommun Syst 61, 295–310 (2016). https://doi.org/10.1007/s11235-015-0002-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0002-0

Keywords

Navigation