Skip to main content
Log in

Improving aggregate utility in IEEE 802.11p based vehicle-to-infrastructure networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

IEEE802.11p, also known as wireless access in vehicular environment defines amendments to IEEE 802.11 to support intelligent transportation systems applications, by enabling both vehicle-to-vehicle and vehicle-to-infrastructure (V2I) communications. The medium access control layer in IEEE 802.11p is based on IEEE 802.11e enhanced distributed channel access, while the physical layer is based on IEEE 802.11a standard. This paper investigates the problem of improving the aggregate utility in IEEE 802.11p based V2I networks, while ensuring fairness among the competing vehicles. Firstly, we consider a V2I network in drive-thru Internet scenario, formed by vehicles moving on a multi-lane highway with different mean velocities in different lanes, in which all the competing vehicles use the same data rate. For error-prone channels, we derive analytical expressions for the class specific optimal minimum contention window (\(CW_{\min }\)) values that simultaneously maximize the aggregate data transferred and provide fairness among vehicles belonging to distinct mean velocity classes in the sense of equal chance of communicating with the road side units. We also obtain an analytical expression for the maximum aggregate data transferred in the presence of channel error. In the second part, we extend the analytical model to compute the amount of successfully transferred data in a multi-rate multi-lane V2I network. In addition to the unfairness problem caused by the distinct velocities, vehicles in such networks suffer from a performance anomaly problem as well, due to the use of distinct data rates. We determine analytical expressions for the \(CW_{\min }\) values required to simultaneously resolve both the problems. Results show that, with proper tuning of \(CW_{\min }\) the aggregate data transferred in the network improves significantly. The analytical results are corroborated using extensive simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We adopt the short notation: \(P(z^{'},s^{'},b^{'}|z,s,b) = P(z_{i}(t+1) = z^{'},s_{i}(t+1) = s^{'},b_{i}(t+1) = b^{'}|z_{i}(t) = z,s_{i}(t) = s,b_{i}(t) = b)\).

References

  1. Alasmary, W., & Basir, O. (2011). Achieving efficiency and fairness in 802.11-based vehicle-to-infrastructure communications. In Proceedings of IEEE VTC-Spring, Budapest.

  2. Alasmary, W., & Zhuang, W. (2012). Mobility impact in IEEE 802.11p infrastructure less vehicular networks. Ad Hoc Networks, 10(2), 222–230.

    Article  Google Scholar 

  3. Babu, A. V., & Jacob, L. (2007). Fairness analysis of IEEE 802.11 multi-rate wireless LAN. IEEE Transactions on Vehicular Technology, 56, 3073–3088.

    Article  Google Scholar 

  4. Banchs, A., & Vollero, L. (2006). Throughput analysis and optimal configuration of 802.11e EDCA. Computer Networks, 50(11), 1749–1768.

    Article  Google Scholar 

  5. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  6. Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., & Madden, S. (2006). A measurement study of vehicular internet access using in situ Wi-Fi networks. In Proceedings of the 12th annual international conference on mobile computing and networking, MOBICOM 2006, Los Angeles, USA (pp. 50–61).

  7. Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking, 8(6), 785–799.

    Article  Google Scholar 

  8. Chen, X., Refai, H. H., & Ma, X. (2010). On the enhancements to IEEE 802.11 MAC and their suitability for safety-critical applications in VANET. Wireless Communications and Mobile Computing, 10, 1253–1269.

    Article  Google Scholar 

  9. Chiu, K.-L., & Hwang, R.-H. (2010). Communication framework for vehicle ad hoc network on freeways. Telecommunication Systems, pp. 1–14. doi:10.1007/s11235-010-9401-4.

  10. Deng, D. J., Ke, C. H., Chen, H. H., & Huang, Y. M. (2008). Contention window optimization for IEEE 802.11 DCF access control. IEEE Transactions on Wireless Communications, 7(12), 5129–5135.

    Article  Google Scholar 

  11. Eichler, S. (2007). Performance Evaluation of the IEEE 802.11p WAVE communication Standard. In Proceedings of IEEE VTC-Fall, Baltimore, MD (pp. 2199–2203). .

  12. Gerlough, D. L., & Huber, M. J. (1975). Traffic flow theory: A monograph. Washington, DC: Transportation Research Board, National Research Council.

    Google Scholar 

  13. Gozalvez, J., Sepulcre, M., & Bauza, R. (2010) Impact of the radio channel modelling on the performance of VANET communication protocols. Telecommunincation System, pp. 1–19. doi:10.1007/s11235-010-9396-x.

  14. Hadaller, D., Keshav, S., & Brecht, T. (2006). MV-max: Improving wireless infrastructure access for multi-vehicular communication, In Proceedings of ACM SIGCOMM workshop on challenged networks (CHANTS-06), Pisa, Italy (pp. 269–276).

  15. Hamidian, A., & Korner, U. (2006). An enhancement to the IEEE 802.11e EDCA providing QoS guarantees. Telecommunication Systems, 31, 195–212.

    Article  Google Scholar 

  16. Harigovindan, V. P., Babu, A. V., & Jacob, L. (2012). Ensuring fair access in IEEE 802.11p-based vehicle-to-infrastructure networks. EURASIP Journal on Wireless Communications and Networking, 2012, 168.

    Article  Google Scholar 

  17. Harri, J., & Fiore, M. (2006). VanetMobiSim vehicular ad hoc network mobility extension to the CanuMobiSim framework. Institut Eurcom Department of Mobile Communications 6904. Sophia Antipolis, France.

  18. He, J., Tang, Z., O’Farrell, T., & Thomas, M. C. (2011). Performance analysis of DSRC priority mechanism for road safety applications in vehicular networks. Wireless Communications and Mobile Computing, 11(7), 980–990.

    Article  Google Scholar 

  19. Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In Proceedings of IEEE INFOCOM, San Francisco, USA.

  20. Hong, K., Lee, S. K., Kim, K., & Kim, Y. H. (2012). Channel condition based contention window adaptation in IEEE 802.11 WLANs. IEEE Transactions on Communications, 60(2), 469–479.

    Article  Google Scholar 

  21. IEEE 802.11e/D4.0, Draft supplement to part 11: Wireless LAN MAC and PHY specifications: MAC enhancements for quality of service (QoS), November (2005).

  22. IEEE P802.11p/D5.0, Draft amendment to standard for information technology telecommunications and information exchange between systems LAN/MAN specific requirements Part 11: WLAN medium access control (MAC) and physical layer (PHY) specifications: Wireless access in vehicular environments (WAVE) (2008).

  23. IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN MAC and PHY Specifications (2007).

  24. Jain, R., Hawe, W., & Chiu, D. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems, DEC Research Report TR-301.

  25. Karamad, E., & Ashtiani, F. (2008). A modified 802.11-based MAC scheme to assure fair access for vehicle-to-roadside ccmmunications. Computer Communications, 31(12), 2898–2906.

    Article  Google Scholar 

  26. Karedal, J., Czink, N., Paier, A., Tufvesson, F., & Molisch, A. F. (2011). Pathloss modeling for vehicle-to-vehicle communications. IEEE Transactions on Vehicular Technology, 60(1), 323–328.

  27. Luan, T. H., Ling, X., & Xuemin, S. (2010). MAC performance analysis for vehicle-to-infrastructure communication. In Proceedings of IEEE WCNC, Sydney, Australia.

  28. Luan, T. H., Ling, X., & Xuemin, S. (2012). MAC in motion: Impact of mobility on the MAC of drive-thru internet. IEEE Transaction on Mobile Computing, 11(2), 305–319.

    Article  Google Scholar 

  29. Ma, X., Chen, X., & Refai, H. H. (2009). Performance and reliability of DSRC vehicular safety communication: A formal analysis. EURASIP Journal on Wireless Communications and Networking, 2009, 969164.

    Article  Google Scholar 

  30. Ott, J., & Kutscher, D. (2004). Drive-thru internet: IEEE 802.11b for automobile users. In Proceedings of IEEE INFOCOM, Hong Kong.

  31. Park, C. G., Han, D. H., & Ahn, S. J. (2006). Performance analysis of MAC layer protocols in the IEEE 802.11 wireless LAN. Telecommunication Systems, 33, 233–253.

    Article  Google Scholar 

  32. Roess, R. P., Prassas, E. S., & Mcshane, W. R. (2004). Traffic Engineering (3rd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

    Google Scholar 

  33. Sheu, S.-T., Cheng, Y.-C., & Wu, J.-S. (2010). A channel access scheme to compromise throughput and fairness in IEEE 802.11p multi-rate/multi-channel wireless vehicular networks. In IEEE VTC, Taipei, Taiwan (pp. 1–5).

  34. Tan, G., & Guttag, J. (2004). Time-based fairness improves performance in multi-rate wireless LANs. In Proceedings of 2004 USENIX annual technical conference, June–July 2004, Boston, MA, USA.

  35. Tan, W. L., Lau, W. C., & Yue, O. (2009). Modeling resource sharing for a road-side access point supporting drive-thru internet. In Proceedings of the sixth ACM international workshop on vehiculAr InterNETworking, ACM VANET (pp. 33–42). New York, NY: ACM.

  36. Tan, W. L., Lau, W. C., Yue, O., & Hui, T. H. (2011). Analytical models and performance evaluation of drive-thru internet systems. IEEE JSAC, 29(1), 207–222.

    Google Scholar 

  37. The NS2 Simulator. http://www.isi.edu/nsnam/ns.

  38. Villalon, J., Cuenca, P., & Orozco-Barbosa, L. (2007). On the capabilities of IEEE 802.11e for multimedia communications over heterogeneous 802.11/802.11e WLANs. Telecommunication Systems, 36(1–3), 27–38.

    Article  Google Scholar 

  39. Wang, Y., Ahmed, A., Krishnamachari, B., & Psounis, K. (2008). IEEE 802.11p performance evaluation and protocol enhancement. In Proceedings of IEEE international conference on vehicular electronics and safety (ICVES) 2008, Ohio, USA (pp. 317–322).

  40. Wu, H., Fujimoto, R. M., Riley, G. F., & Hunter, M. (2009). Spatial propagation of information in vehicular networks. IEEE Transactions on Vehicular Technology, 58(1), 420–431.

    Article  Google Scholar 

  41. Xiao, Y. (2005). Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11 e wireless LANs. IEEE Transactions on Wireless Communications, 4.4(2005), 1506–1515.

    Article  Google Scholar 

  42. Xie, L., Q. Li, Mao, W., Wu, J., & Chen, D. (2009). Achieving efficiency and fairness for association control in vehicular networks. In Proceedings of IEEE ICNP 2009, Princeton, NJ (pp. 324–333).

  43. Yang, Y., & Kravets, R. (2004). Distributed QoS guarantees for realtime traffic in ad hoc networks. In Proceedings of 2004 first annual IEEE communications society conference on SECON, Santa Clara, CA (pp. 118–127).

  44. Yang, Y., & Kravets, R. (2006). Achieving delay guarantees in ad hoc networks using distributed contention window adaptation. In IEEE INFOCOM 2006, 25th IEEE international conference on computer communications, Barcelona (pp. 1–12).

  45. Yang, D. Y., Lee, T.-J., Jang, K., Chang, J.-B., & Choi, S. (2006). Performance enhancement of multi-rate IEEE 802.11 WLANs with geographically scattered stations. IEEE Transactions on Mobile Computing, 5(7), 906–919.

    Article  Google Scholar 

  46. Yang, Y., Wang, J., & Kravets, R. (2007). Distributed optimal contention window control for elastic traffic in single cell wireless LANs. IEEE Transactions on Networking, 15(6), 1373–1386.

    Article  Google Scholar 

  47. Yoo, S. H., Choi, J.-H., Hwang, J.-H., & Yoo, C. (2005). Eliminating the Performance Anomaly of 802.11b. Springer Lecture Notes in Computer Science, 3421, 1055–1062.

    Article  Google Scholar 

  48. Yousefi, S., Mousavi., M. S., & Fathy, M. (2006). Vehicular ad hoc networks (VANETs): Challenges and perspectives. In Proceedings of the 6th IEEE international conference on ITST, Chengdu, China (pp. 761–766).

  49. Zeadally, S., Hunt, R., Chen, Y., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETs): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harigovindan, V.P., Babu, A.V. & Jacob, L. Improving aggregate utility in IEEE 802.11p based vehicle-to-infrastructure networks. Telecommun Syst 61, 359–385 (2016). https://doi.org/10.1007/s11235-015-0035-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0035-4

Keywords

Navigation